Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

reading / British practice / Vol D - 1990 (ocr) ELECTRICAL SYSTEM & EQUIPMENT

.pdf
Скачиваний:
9
Добавлен:
17.07.2023
Размер:
30.18 Mб
Скачать

3.3 kV switchgear — fused equipment

SECONOARY ISOLATING

CONTACTS

ARC cRLITE

CIRCUIT

ISOLATING

CONTACTS

RACKING

I N CAM

BUSBAR

ISOLATING

CON racrs

SOLENOID

OIL DASRPOT

FIG. 5.39 Rear viev, of II kV air circuit-breaker shov, n in Fig 37

383

Switchgear and controlgear

 

Chapter 5

A .0 .B. CLOSED

INDICATOR (RED)

CONTROL

SELECTOR SWITCH

SAFETY KEY

ON - OFF NO

COMBINED STEERING

AND RACKING HANDLE

SERVICE-EARTH-TEST

I NDICATOR

EARTH SELECTOR KEY

INTERLOCK SELECTOR BOLT

SPRING-LOADED PIN

TWIN DOLLY WHEELS

AND RACKING GEAR

PULL TO CLOSE

LANYARD

FOR MANUAL A .0 .8 . OPERATION

Fic. 5.40 Front view of 11 kV air circuit-breaker fitted to the type of switchboard illustrated in Fig 5.27

5.1.8 Rated short-circuit making current

In addition to the requirements of BS5311, switching devices are capable of making and latching closed against a prospective current equivalent to that of the

system in which the switchgear will be installed, as li mited in magnitude and duration by the highest rating fuselirik permissible in combination with the switching device.

384

3.3 kV switchgear — fused equipment

Fic. 5.41 Rear view of 11 kV air circuit-breaker shown in Fig 5.40

385

111111'-

Switchgear and controlgear

Chapter 5

 

 

 

 

ARC CHUTES

SECONDARY CONTACTS

SECONDARY

SEMAPHORE INDICATORS

CONTACTS

 

OPERATIONS COUNTER

EARTHING SELECTOR

HANDLE

CLOSING

CONTACTOR

CLOSE COIL PROTECTION

AUX 9

PRESS FOR SLOW

OPENING

ISOLATING MECHANISM

SELECTOR HANDLE

MECHANICAL TRIP BUTTON

AUXILIARY SWITCH 51

ANT PUMPING

RELAY AUX 8

AUXILIARY SWITCH 52

OPERATING MECHANISM

AIR CYLINDERS

Flo. 5.42 Front view of 3.3 kV air circuit-breaker shown withdrawn from the type of switchboard illustrated in Fig 5.29

386

3.3 kV switchgear — fused equipment

Flo. 5.43 Rear view of 3.3 kV air circuit-breaker shown in Fig 5.42

387

Switchgear and controlgear

Chapter 5

 

 

FiG. 5.44 3.3 kV air circuit-breaker shown withdrawn from the type of switchboard illustrated in Fig 5.30

388

 

 

 

 

3.3 kV switchgear — fused equipment

 

 

 

5.1.9 Rated duration of short- circuit

The above examples serve to illustrate the philo-

One second, subject to the '2 minute' rating described

sophy of the relationship of motor rating to the

capability of the fuse/switching device combination.

under 'rated normal current'.

Breaking current capability and opening times of the

 

 

 

 

 

 

 

 

order of 11 kA sym and 40 ms, respectively, are typical

5 1.10 Rated operating sequence

of contemporary air-break switching devices in the

 

F:quipinent ‘‘ith fuselinks fitted, 0-t-CO.

UK. Development is in hand in the vacuum-break

device field to at least match the capability of the

S\N

itching. device without fuselinks,

air-break designs.

 

 

The 'two successive starts' requirement is because

 

 

 

 

5,1.11

 

Co-ordination of switching device with

all motor drives in a power station must be capable of

 

this without overheating. As precise details of starting

 

 

fuse protection

current and duration are seldom available at the time

.\„ ex ample of co-ordination of the current breaking

of placing controlgear contracts, experience has shown

,:apability of the switching device with the short-circuit

the 20 s per start allowance to be a 'safe' assumption.

 

 

 

 

fuse protection is given below.

The principle is illustrated graphically in Fig 5.45.

 

Parameters assumed:

 

Motor starting current, 4.8 x full load current (see

TIME

 

13S4999: Pt.41: 1972: Table 41.4: Col. 3).

 

-1- %■ o successive starts each of 20 s duration.

 

Opening time of switching device, 40 ms (see defini-

 

 

tion of opening time under 'rated breaking current

 

of s witching devices).

Fuselinks `derating factor' 1.8 (this is, in effect, an 'anti-deterioration factor').

Now.: The following calculation is based on 'nominal' salues, i.e., all performance tolerances are ignored:

Motor rating

1200 kW

Full load current

244 A

Starting current (4.8 x 244) =

1171 A

Allowing for the fuse derating factor, starting current is assumed to become 1.8 x 1171 = 2108 A.

To carry, without operation, for a period of 2 x s = 40 s, a current of this value, fuselinks of UK manufacture (i.e., fuselinks to BS2692) require to have a continuous current rating of the order of 400-

4{) A .

The 'take-over' current (see definition under 'rated breaking current of switching devices') of fuselinks of he order of 400-450 A, i.e., the pre-arcing current

[hey

will carry for a period equal to that of the open-

[rig

ti me of the

switching device, requires that the

S1.1 itching device

shall have a rated breaking current of

the order of 11 kA symmetrical (sym).

It follows that the lower the breaking current capability of the switching device, the lower the rating of

11e back-up fuse protection and hence the smaller the rating of motor which may be handled. Typically, in

d so itching device of 5 kA sym rated breaking current, th maximum permissible rating of the fuselinks would

be of the order of 250 A. This in turn would, on the basis of two successive starts each of 20 s duration,

li mit the size of motor to approximately 600 kW.

STARTING

STARTING

SWITCHING DEVICE

CURRENT

CURRENT 18 NONIMUM BREAKING

CURRENT

CURRENT

 

Pic. 5.45 Principle of co-ordination of fuselink rating with switching device current breaking capability and motor rating

5.2 Design and construction

5.2.1 General

It was remarked at the beginning of Section 4.2 of this chapter, that whereas the interrupter (the circuit switching device) in 11 kV switchgear is invariably a circuitbreaker, at 3.3 kV, depending upon the duty involved, it may be either a circuit-breaker or a fused switching device. It was further pointed out that, whether featuring a circuit-breaker or a fused switching device, the general form of construction of the switchgear and the operational facilities provided, are similar. Accordingly, the only features dealt with here are those particular to the design and construction of fused

389

Switchgear and controlgear

Ci

 

 

switching equipment or those which, in the interest of clarity, are felt to merit further discussion.

In the early 1960s, there were explosions in the terminal boxes of 3.3 kV motors from flashover across the surface of the filling compound then common. As a consequence, in addition to improvement of the design in his area, the concept of limitation of fault current energy by the use of fuses was introduced. Initially the application of this philosophy took the form of series-connected high breaking capacity (HBC) fuselinks in boxes adjacent to the motors, followed by incorporation of the fuselinks in the switchgear.

It should, perhaps, be stated here that the backing of switching devices, e.g., circuit-breakers, contactors, by fuselinks was then, and remains presently, a well established practice — adopted primarily to deal with currents of a magnitude beyond the making and breaking capability of the switching device. Whilst, as will be explained, this is now the situation in CEGB practice, the switchgear into which the fuselinks were fitted initially had the full system fault level capability unaided by the fuselinks.

Since the mid 1960s, the switchgear used to control 3.3 kV motors up to around 1000 kW has incorporated HBC fuse short-circuit protection — advantage being taken of the fuse characteristic to reduce the fault current switching capability required of the switching device, and thereby produce a more compact and less expensive design of switchgear for the duty. However, a pre-requisite of the development was maintenance of the operational facilities of the existing switchgear with no reduction in reliability.

5.2.2 Duty of switching device and circuit earthing facilities

The duty of interrupting the higher values of overcurrent (which may be many times the current manifested during the starting of motors direct-on-line) having been taken over by the fuselinks, such capability on the part of the circuit switching device became superfluous. The 'scaling down' of the switching device thus possible, permitted appreciable reduction in the overall size of the switchgear together with significant saving of capital cost. However, the reduction in fault current capability of the switching device meant that it could not itself serve as the circuit earthing device. (Note: busbar earthing facilities are not required on switchgear controlling motors.) Accordingly, each switchgear equipment of this type is, in addition to the circuit s witching device, equipped with a circuit earthing switch capable of making and carrying, until the operation of protection elsewhere, any value of fault current which could appear accidentally on the circuit. The circuit earthing switch is padlockable in the closed position. Because in an earthing operation it is essential that the earth path must at all times be electrically continuous, the earth switch is arranged to by-pass the circuit HBC fuselinks.

5.2.3 Switching devices

Like circuit-breakers, fused switching devices of same type, current rating and circuit duty are requi, to be interchangeable, as also are those of the same and current rating but of different duty, subject any modification necessary to control, indication an interlocking circuitry.

Whilst, as for circuit-breakers, closing mechanisr of either the dependent power solenoid or stored er ergy spring types are acceptable, manufacturers to date have supplied only the former. Compared with circuit - breakers, the power requirements of the closing solenoids of fused switching devices are relatively modest

— of the order of a few kilowatts.

To meet CEGB operational and performance requirements, the design philosophy of fused switching device equipment follows more closely the principles of circuit-breaker switchgear than that of contactor controlgear. Indeed, interrupters of the air-break type are virtually circuit-breakers, but of limited short-circuit capability. Thus, closing mechanisms are of the 'latch closed' type and comply generally with the requirements specified for those of circuit-breakers.

5.2.4 Switching device operating mechanisms

Closing mechanisms of the dependent power solenoid type are specified to be 'trip-free'. Alternatively, if not trip-free in the generally accepted sense, they must simulate the action by being free to allow opening of the switching device immediately after closure, regardless of whether the closing control circuit remains energised. Stored energy mechanisms must comply generally with the requirements specified for circuit-breakers.

5.2.5 Main circuit fuselinks

Operation of any fuselink initiates opening of the switching device. This is essential in order to preserve the integrity of the `on/off indication and hence, as far as possible, indication of the state of the plant controlled.

The fuselinks for the short-circuit protection of the main circuit are of the HBC type compliant with BS2692. The rating of the fuselinks fitted is normally the highest which will provide satisfactory 'take-over' from the switching device.

Virtually all 3.3 kV motors are switched at full system voltage, i.e., direct-on-line started. Thus the switchgear must be capable of making and carrying, until the drive has run-up to operational speed, a current of several times that of the motor rated full-load.

Thus, the maximum rating of motor which may be controlled by fused switching device equipment is determined by the overcurrent carrying capability of the fuselinks of the highest rating permissible in the switchgear. The highest rating of transformer which may be so controlled, however, is dictated more by the rated continuous current carrying capacity of the fuselinks,

390

 

 

 

 

 

 

 

Low voltage switchgear, controlgear and fusegear

 

 

 

takine into account 'inrush' upon switching in. The

6.1.2 Capability required of main circuit

ina\imum rating of fuselinkis, of course, determined

making/breaking devices

hv the overcurrent making and breaking capability

(a) Circuit-breakers

 

i• die switching device. The principle of co-ordination

 

 

 

o

he performance of the switching device with that

• Rated short-circuit breaking current:

 

o f the

fuselinks is described in Section 5.1 of this

 

Symmetrical — 36 kA or 43.3 kA, as required.

j l arter.

 

 

 

 

 

 

0

 

The fuselinks are mounted on the carriage of the

 

Asymmetrical — as symmetrical value plus 50 0

.%%itching

device, on the busbar side, such that they

 

DC component.

 

 

 

 

 

are disconnected automatically from both the busbars

• Rated short-circuit making current: a current

 

nJ he circuit when the switching device is discon-

.i

 

equivalent to 2.3 times the value of the rated

 

 

 

 

 

 

 

nected (isolated). It is possible to gain access to the

 

short-circuit (symmetrical) breaking current, i.e.,

(tiselinks only when the switching device is discon-

 

 

2.3 x 36 kA, or 2.3 x 43.3 kA, as appropriate.

nected. To ensure opening of the switching device auto-

 

 

 

matically upon operation of any fuselink, each fuse-

• Short-time current capability: a current equiva-

 

nk incorporates a striker pin arranged to actuate the

li

 

lent to the rated symmetrical breaking current

 

;ppine mechanism directly or through energisation

 

for a duration of 3 s.

;;

 

 

 

circuit by an auxiliary switch. Flag indica-

 

of the [rip

(b) Contactors

[ion of the

operation of the fuselinks is provided at

[ he s‘kitchgear.

Examples of switchboards featuring

Contactors switching main circuits, e.g., motor

!ii,e(.1 equipment are shown in Figs 5.46, 5.47 and 5.48.

circuits, are selected as follows,in accordance with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the 'duties' and 'utilisation categories' recognised

6

Low voltage switchgear, controlgear

in BS5424: Part 1:

Direct-to-line started motors other than actuator

and fusegear

 

drives

6.1 Required performance

 

Rated duty — uninterrupted. A duty in which

 

the main contacts may remain closed whilst car-

 

he principal

low voltage auxiliaries plant supply

 

rying a steady current without interruption for

 

 

periods of more than eight hours (weeks, months,

 

 

 

in power stations in the UK operate at 415 V,

 

 

 

 

 

or even years).

three-phase

for motor drives and three-phase and

 

 

Utilisation category — AC3, but AC4 if

neutral where single-phase supplies are required. The

 

 

'inching' or 'plugging' is a feature of the duty.

three-phase short-circuit level of these systems, the

 

neutral point of which is normally solidly earthed, can

 

AC3 is appropriate where the normal duty

approach 43 kA. To satisfy the system conditions, the

 

is the starting of a motor direct-on-line, and

.viitchilear is rated as follows.

 

its switching off under normal running load.

 

 

 

 

 

 

 

 

'Plugging' is a term used to denote stopping

6.1.1 Short-circuit withstand strength of busbar

 

or reversing a motor rapidly by reversal of the

 

motor primary connections while it is running.

systems

 

 

 

 

 

 

 

 

'Inching' implies energising a motor once or re-

 

 

 

 

 

 

 

 

 

36 kA

 

(equivalent to 26 MVA) or 43.3 kA (equi-

 

peatedly for short periods to obtain small move-

 

alent to 31 MVA), as appropriate, for 3 s, when

 

ments of the driven mechanism.

 

the busbar protective device, i.e., feeder circuit, is

 

Mechanical endurance — 1 million no-load

 

i:ircuit-breaker.

 

operating cycles. This represents the number

 

\\ here

 

the

busbar protective device features fuses,

 

of no-load operating cycles which can be made

 

 

 

before it becomes necessary to service or replace

 

36 L,\ or 43.3 kA 'prospective', as limited in

 

 

 

any parts other than contacts.

 

ina2nitude

and duration by the 'cut-off' charac-

 

 

 

 

 

icristic

of the fuses.

Actuator drives (excluding modulating duty).

I he peak value of the major loop (of current) during

 

Rated duty — intermittent duty Class 0.1, on-

 

load factor 60%. A duty in which the main

 

firq c,

 

 

 

contacts of a contactor remain closed for peri-

 

 

 

 

cle of current is taken to assume a mag-

 

ilitthie of not less than 2.3 times the symmetrical

 

ods bearing a finite relationship to the no-load

 

 

value, i.e., 2.3 x 36 kA or 2.3 x 43.3 kA,

 

periods, both periods being too short to allow

 

dppropriate. It will be appreciated that whilst in

 

the contactor to reach thermal equilibrium. The

 

his peak is actually attained, it is usually a 'pro-

 

intermittent duty above implies a capability of

 

e

 

Nalue in (b), reduced markedly by the cut-

 

operation at a rate of 12 operating cycles per

011 characteristic of fuses at currents of short-circuit

 

hour, the on-load period of each cycle being

 

el.

 

 

 

 

 

 

60% of the whole cycle.

 

 

 

 

 

 

 

 

391

Switchgear and controlgear

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F.yropp a BOURNE'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33.y UNIT AuXIL APP BOAR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

.

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ov

oto

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_

 

,

 

 

 

_

 

 

 

 

 

 

_

_

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.—

 

 

 

=

0

 

 

 

 

 

 

1=1

 

 

0 i=3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

0

 

0=

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

MO

 

 

 

000

 

 

 

 

 

 

 

000

DOD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.-

 

 

—..

=—,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DO

 

=

n

 

00

 

 

 

0

 

 

 

 

fti01

0

 

 

00

 

0

 

 

 

 

lea;

 

rE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

 

 

 

A

9

 

 

 

 

0 9

 

 

 

 

 

 

 

 

 

 

 

 

 

A v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

no

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TT

 

 

00

 

.17

 

 

 

 

=

 

 

.

 

 

 

 

.

 

 

 

 

=

 

 

 

 

 

'CO

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gg j

 

 

0

 

00

 

 

0

 

 

 

00

 

 

0

 

 

 

Pfli

0

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Sky UNIT ALA.

 

 

 

3 33/v UNIT

 

 

 

350A TYPE AK

 

350A TYPE AK

 

 

 

 

 

350A TYPE AK

 

 

 

350A TYPE AK

 

 

 

 

350A TYPE AK

 

 

 

TRANSFORMER

 

 

 

SERVICES

 

 

 

CONTROL GEAR

CONTROL GEAR

 

 

 

 

 

CONTROL GEAR

 

 

 

CONTROL GEAR

 

 

 

 

CONTROL GEAR

 

 

 

 

 

 

 

TRANSFORMER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

ISUOA TYPE A.

 

,

603A TYPE AH•

 

 

 

 

 

CONDENSATE

 

 

 

 

 

 

DC HEATER

 

 

 

A

START UP AIR

 

 

 

V

GAS RECYCLING

 

 

 

0

DC HEATER

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. CIRCUIT BREAKER

 

CIRCUIT BREAKER

 

 

0 EXTRACTION PUMP A

0 EXTRACTION PUB, A

 

 

 

 

PUMP B

 

 

 

 

 

 

FAN A

 

 

 

 

 

EXTRACTION

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PUMP B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

DOOR SYMBOL

 

 

DOOR SYMBOL COLOUR

DOOR SYMBOL COLOUR

 

 

 

DOOR SYMBOL COLOUR

 

 

 

DOOR SYMBOL COLOUR

 

 

 

 

DOOR SYMBOL COLOUR

 

 

'

DOOR SYMBOL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

' COLOUR WHITE

 

 

 

COLOUR

 

 

 

BRILLIANT GREEN

 

 

 

 

 

ORANGE

 

 

 

 

 

 

 

 

WHITE

 

 

 

 

 

FRENCH BLUE

 

 

 

 

COLOUR WHITE

 

 

 

 

 

 

 

 

 

SIGNAL RED

 

:Fr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ti

 

 

 

 

 

 

 

 

 

 

 

START UP AIR

 

 

0

 

 

FUEL OIL PIMP

 

 

ACB

GAS RECYCLING

 

 

0 30.1 CONDENSATE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-, S

V

 

 

 

ENS

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXTRACTION ZA P B

 

 

 

 

 

PUMP A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FAN B

 

 

 

 

MAKEUP PUMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rcs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i.:,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

09015 SYMBOL

DOOR SYMBOL COLOUR

 

 

 

DOOR SYMBOL COLOUR

 

 

 

000R symeoL COLOUR

 

 

 

 

DOOR SYMBOL COLOUR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

COLOUR-MIDDLE BROWN

 

 

 

 

 

BLACK

 

 

 

 

 

 

SIGNAL RED

 

 

 

BRIU_IANT GREEN

 

 

 

 

MIDDLE BROWN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REL AY

SIDE VIEW OF CONTROL GEAR PANEL

SCE VIEW OF CIRCUIT BREAKER PANEL

 

 

BE.

 

 

 

 

 

 

 

 

 

 

ACCESS TO FUSE

 

 

 

 

 

 

TERMINAL

 

 

 

 

 

 

CHAMBER

 

 

BuSBAR

 

 

 

 

 

 

 

Top TER

CHAMBER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sv•ATCR NO

 

 

 

 

 

 

 

DE VICE

 

 

 

 

 

 

COWART -MEW.

CT

 

 

 

ACCESS TO FUSE

 

 

 

 

 

A TERMINAL

 

 

cHAmBER

 

 

 

 

 

 

 

 

 

 

CHAMBER

 

 

 

 

 

 

 

 

 

 

 

 

 

CABLE BOX

 

 

BuSBAR

 

 

 

 

BOTTCm TLER

CHAMBER

 

 

 

 

 

 

 

 

 

 

 

SWITCH.NG

 

 

 

 

 

 

 

DELICT

 

 

 

 

 

 

COMPARTMENT

CT

 

 

 

 

 

 

 

 

 

 

 

 

cHANIBER

 

 

 

CABLE Sox

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.46 3.3 kV switchboard featuring Whipp and Bourne Type AK fused equipments arranged in double-tier formation

392