
- •Содержание
- •1. Введение.
- •1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- •Требования к химическим производствам
- •Компоненты химического производства
- •Разделение на две твердые фазы:
- •Разделение жидкости и твердого вещества:
- •1.2 Промышленный катализ
- •Основные положения теории катализа.
- •1.3. Сырьевая база химической промышленности.
- •Классификация сырья
- •Характеристика минерального сырья
- •Химическое сырье
- •Растительное и животное сырье
- •Характеристика разработок минерального сырья
- •Качество сырья и методы его обработки
- •Способы сортировки:
- •Способы обогащения:
- •Сырьевая база химических производств
- •1.4 Энергетическая база химических производств
- •1.5 Критерии оценки эффективности производства
- •1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- •1.5.2. Балансы производства
- •1. Материальный баланс
- •2. Энергетический (тепловой) баланс
- •3. Экономический баланс
- •1.5.3. Технологические параметры химико-технологических процессов.
- •1.6.Принципы создания ресурсосберегающих технологий
- •2. Теоретические основы химической технологии
- •2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- •2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- •Молекулярная диффузия. Первый закон Фика
- •Турбулентная диффузия
- •Уравнение массоотдачи
- •Уравнение массопередачи
- •Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- •Подобие массобменных процессов
- •3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- •3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- •Методология исследование химико-технологических систем.
- •3.2. Сырьевая и энергетическая подсистема хтс
- •1. Классификация химических реакторов по гидродинамической обстановке.
- •2. Классификация химических реакторов по условиям теплообмена.
- •3. Классификация химических реакторов по фазовому составу реакционной массы.
- •4. Классификация по способу организации процесса.
- •5. Классификация по характеру изменения параметров процесса во времени.
- •6. Классификация по конструктивным характеристикам.
- •3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- •Реакторы для гетерогенных процессов с твердой фазой.
- •Реакторы для гетерогенно-каталитических процессов.
- •4. Основные математические модели процессов в химических реакторах
- •4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- •4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- •Каскад реакторов смешения.
- •Влияние степени конверсии.
- •Влияние температуры.
- •5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- •5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- •Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- •Оптимизация степени конверсии.
- •7. Важнейшие промышленные химические производства
- •7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- •Синтез аммиака
- •Сырье для синтеза аммиака.
- •Технология процесса.
- •Основные направления в развитии производства аммиака.
- •7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- •Физико-химические основы процесса.
- •Контактное окисление аммиака.
- •Обоснование роли параметров и их выбор.
- •Окисление оксида азота (II) до диоксида.
- •Абсорбция диоксида азота.
- •Технология процесса.
- •7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- •Классификация минеральных удобрений.
- •7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- •Производство нитрата аммония.
- •7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- •Функциональная схема производства эфк.
- •Сернокислотное разложение апатита.
- •7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- •Производство простого суперфосфата.
- •Производство двойного суперфосфата
- •Азотнокислое разложение фосфатов. Получение сложных удобрений
- •Обжиг серосодержащего сырья.
- •Обоснование роли параметров и их выбор.
- •Сжигание серы.
- •Окисление диоксида серы.
- •Обоснование роли параметров и их выбор.
- •Технология контактного окисления so2.
- •Абсорбция триоксида серы.
- •Перспективы развития сернокислотных производств.
- •7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- •Основные направления применения электрохимических производств
- •Электролиз раствора хлорида натрия
- •Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- •Электролиз раствора хлорида натрия с ртутным катодом
- •7.6. Промышленный органический синтез
- •Первичная переработка нефти.
- •Каталитический риформинг углеводородов.
- •7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- •7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- •Окисление изопропилбензола (кумола)
- •Технологическая схема получения фенола и ацетона кумольным способом.
- •7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- •7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- •7.6.5.2. Производство пищевых белков
- •8. Химико-технологические методы защиты окружающей среды
- •8.1. Утилизация и обезвреживание твердых отходов
- •8.2. Утилизация и обезвреживание жидких отходов
- •8.3. Обезвреживание газообразных отходов
Подобие массобменных процессов
В инженерной практике пользуются расчетными формулами, полученными преобразованием дифференциального уравнения конвективного массообмена в критериальное уравнение методом теории подобия.
Подобие граничных условий описывается уравнением молекулярной диффузии Фика M = -DFdy/dn (a) и уравнением массоотдачи М = уF(y – yгр.) (б), которые характеризуют количество вещества, перенесенного через пограничный слой.
Уравнение (а) по структуре аналогично уравнению Фурье для передачи тепла теплопроводностью, а уравнение (б) аналогично уравнению теплоодачи Ньютона. Приравняем правые части уравнений (а) и (б), получим:
или
Используя способ подобного
преобразования уравнений, опустим
одинаковые сомножетели и разделим левую
часть на правую, в итоге получим:
.
Данный безразмерный комплекс представляет диффузионный критерий Нуссельта (Nu’). Он характеризует отношение скорости переноса вещества в ядре фазы () к скорости переноса молекулярной диффузией (D). Критерий Нуссельта Nu’ является определяемым критерием, поскольку в него входит величина . Иногда критерий Нуссельта называют критерием Шервуда (Sh).
Подобие процессов переноса вещества в ядре фазы можно выразить с помощью дифференциального уравнения конвективного переноса в движущейся среде при нестационарном режиме:
Выразим одномерную диффузию массы вдоль оси х, перпендикулярно к направлению движения среды:
Проведя подобное преобразование уравнения, получим следующие критерии подобия:
а)
- диффузионный критерий
Фурье, который
характеризует подобие неустановившихся
процессов массообмена;
б)
- диффузионный критерий
Пекле, котрый характеризует
отношение переноса вещества конвекцией
(w) к
молекулярному переносу (D)
в сходственных точках подобных систем;
в) диффузионный критерий Прандтля выражает постоянство отношения физических свойств жидкости или газа в сходственных точках подобных систем:
.
Диффузионный критерий Прандтля называют иногда критерием Шмидта Sc.
Обычно в процессах массопереноса
определяют коэффициент массоотдачи .
На этом основании определяемым критерием
считают критерий Nu’.
При этом учитывают кроме диффузионного
также гидродинамическое и геометрическое
подобие, т.е. равенство в сходственных
точках критериев Re,
Fr, Ga
и симплексов ,
,
где l1,
l2,
l3,…ln
- характерные геометрические размеры,
l0
– определяющий размер. Тогда критериальные
уравнения для определения Nu’
будут иметь вид для неустановившихся
процессов массоотдачи:
Nu’ = f(Fo’, Pe’, Re, Fr, Pr’, Г1, Г2…)
Для установившихся процессов отпадает условие равенства критериев Fo’, тогда
Nu’ = f(Re, Fr, Pe’, Г1, Г2…)
Или
Численные значения показателей степеней и коэффициента А обычно находят опытным путем.
3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
Производственные процессы в химической промышленности и сходных ей областях характеризуются большим разнообразием выпускаемой продукции и большой сложностью. Условия протекания отдельных стадий могут быть весьма различными: от высоких температур (1500 0С) в случае электрокрекинга углеводородов до очень низких температур при разделении воздуха, от высоких давлений при производстве аммиака и метанола до низких в процессах вакуумной перегонки. Одни процессы проводят в водной фазе, в других даже следовые количества воды могут полностью дезорганизовать процесс. Технологические схемы получения того или иного продукта могут быть более или менее компактными.
Несмотря на существенные качественные и количественные различия отдельных технологических процессов, разнообразие комбинаций аппаратов, используемых для их реализации, различные мощности и условия протекания, все они имеют общие свойства.
Каждое производство в соответствии с общей теорией систем является сложной системой, которая называется химико-технологической системой.