
- •Аннотация
- •1. Основы теории измерений
- •1.1. Понятия “эксперимент” и “экспериментальные данные”. Источники и пути повышения точности экспериментальных данных
- •1.2. Основные понятия и определения теории измерений
- •1.3. Классификация погрешностей результатов измерений
- •2. Основы теории вероятностей и математической статистики
- •2.1. Случайная величина. Интегральная и дифференциальная функции распределения случайной величины и их свойства.
- •2.2. Генеральная и статистическая (выборочная) совокупности. Статистический ряд и способы его представления
- •2.3. Статистические (эмпирические) функции распределения
- •2.4. Статистические оценки параметров распределения случайной величины и их свойства
- •2.5. Статистические гипотезы
- •3. Основные законы распределения
- •3.1. Распределение Гаусса (нормальное распределение)
- •3.2. Распределение Пирсона
- •3.3. Распределение Стьюдента
- •3.4. Распределение Фишера
- •3.5. Экспоненциальное и логнормальное распределения
- •3.6. Равномерное и треугольное распределения
- •4. Обработка результатов прямых многократных измерений
- •4.1. Понятие о прямых многократных измерениях. Общий алгоритм обработки результатов наблюдений
- •4.2. Оценки центра распределения результатов наблюдений, оценка результата измерения
- •4.3. Моменты случайной величины и их оценки, оценки стандартных отклонений результатов наблюдений и результата измерения
- •4.4. Коэффициенты формы закона распределения случайной величины и их оценки
- •4.5. Устранение грубых ошибок прямых многократных измерений
- •4.5.1. Исключение промахов проверкой статистических гипотез
- •4.5.2. Исключение промахов универсальным методом
- •4.6. Исключение переменной составляющей систематической погрешности
- •4.7. Определение вида закона распределения результатов наблюдений
- •4.7.1. Определение вида закона распределения методом моментов
- •4.7.2. Критерии принадлежности результатов наблюдений к нормальному закону распределения
- •4.8. Интервальная оценка результата измерения
- •4.8.1. Определение доверительного интервала результата измерения
- •4.8.2. Определение границ случайной погрешности
- •4.8.3. Определение границ неисключенной систематической погрешности
- •5. Правила округления результатов измерений
- •6. Обработка результатов прямых однократных измерений
- •7. Обработка результатов неравноточных измерений
- •7.1. Понятие о неравноточных измерениях. Общий алгоритм обработки результатов неравноточных измерений
- •7.2. Проверка гипотезы о равенстве дисперсий
- •7.3. Проверка гипотезы о равенстве центров распределений
- •7.4. Определение точечной и интервальной оценок результата измерений
- •8. Обработка результатов косвенных измерений
- •8.1. Косвенные измерения. Коэффициент корреляции
- •8.2. Критерии значимости корреляционной связи
- •8.3. Определение стандартного отклонения результата измерения
- •8.4. Определение доверительного интервала результата измерения
- •9. Основы теории интерполяции
- •9.1. Основные понятия и определения теории интерполяции
- •9.2. Интерполяция точная в узлах
- •9.2.1. Конечные и разделенные разности
- •9.2.2. Интерполяция кусочно-линейными функциями
- •9.2.3. Интерполяция полиномами
- •9.3. Аппроксимация
- •9.3.1. Наиболее часто используемые функции
- •9.3.2. Методы выбора аппроксимирующей функции
- •9.3.3. Методы аппроксимации
- •10. Обработка результатов совместных измерений
- •10.1. Понятие о совместных измерениях и регрессии. Задачи статистического исследования регрессии
- •Статистический анализ коэффициентов регрессии.
- •10.2. Регрессия элементарными функциями
- •10.3. Регрессия полиномами
- •10.4. Статистический анализ коэффициентов регрессии
- •10.5. Устранение грубых ошибок измерения
- •10.6. Построение доверительной области регрессии.
- •10.7. Проверка соответствия уравнения регрессии экспериментальным данным
- •Вопросы к экзамену
- •Правила округления результатов измерений.
- •Понятие о неравноточных измерениях. Общий алгоритм обработки результатов неравноточных измерений.
- •Критерии значимости корреляционной связи.
- •Понятие о совместных измерениях и регрессии. Задачи статистического исследования регрессии.
- •Регрессия элементарными функциями.
- •Основные понятия и определения теории интерполяции.
- •Конечные и разделенные разности.
- •Интерполяция кусочно-линейными функциями.
- •Список рекомендуемой литературы
5. Правила округления результатов измерений
Значащие цифры числа – это все цифры от первой слева, не равной нулю, до последней записанной справа цифры. При этом нули в множителе 10 не учитываются.
Пример Приближенное число 0.38 имеет 2 значащих цифры, 0.308 – три, 0.3080 – четыре, 0.00308 – три. Значащими цифрами являются подчёркнутые цифры. |
В приближенном числе различают верные и сомнительные цифры. Верные цифры приближенного числа определяют по его абсолютной погрешности. Абсолютная погрешность округленного числа определяется по формуле
,
где
– истинное значени числа,
–
округленное
значение числа.
Принято считать:
если отличная от нуля первая (слева) цифра абсолютной погрешности равна или меньше 5, то все цифры приближенного числа, расположенные левее, будут верными;
если эта цифра абсолютной погрешности больше 5, то последняя цифра числа будет сомнительной.
В окончательной записи погрешность измерения принято выражать числом с одним или двумя значащими цифрами. Две значащие цифры приводят в случае выполнения точных измерений.
Правила округления рассчитанного значения погрешности и полученного результата измерений:
Погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 и 2, и одной, – если первая цифра равна 3 или более;
Результат измерения округляется до того же десятичного знака, которым оканчивается округленное значение абсолютной погрешности. Если десятичная дробь в числовом значении результата измерений оканчивается нулями, то нули отбрасываются до того разряда, который соответствует разряду числового значения погрешности;
Если цифра старшего из отбрасываемых разрядов меньше 5, то остающиеся цифры в числе не изменяют. Если эта цифра равна или больше 5, то последнюю оставляемую цифру увеличивают на единицу. Лишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают.
Пример Числовое значение результата измерения составляет 25.458. При погрешности результата, выраженной пределами ±0.02 результат округления будет иметь вид 25.46. Если пределы погрешности ± 0.002, то числовое значение результата сохраняется полностью. Числовое значение результата измерений 105553 получено с погрешностью ±0.0005. В нем сохраняются четыре значащие цифры и округление даст число 105600. Если числовое значение результата 105.553, то при тех же условиях округление дает число 105.6. Число 6783.6 округляют до 6784, число 5499.7 – до 5500, число 12.34501 – до 12.35. |
Если отбрасываемая цифра равна пяти, а следующие за ней цифры неизвестны (отсутствуют) или нули, то последнюю сохраняемую цифру числа не изменяют, если она четная, и увеличивают на единицу, если она нечетная.
Пример Число 105.5 при сохранении трех значащих цифр округляют до 106. Число 1234.50 округляют до 1234. Число 5465.50 – до 5466. число 43210.500 – до 43210. |
Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним-двумя лишними знаками (или числом разрядов, которые удается получить).