Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан(блок2).doc
Скачиваний:
49
Добавлен:
09.02.2015
Размер:
1.33 Mб
Скачать

Б.2 в. 16 Первая краевая задача для Ур колебания струны. Интеграл энергии и единственности решения первой краевой задачи.

Рассмотрим уравнение (1) описывающие поперечные колебания струны. (Если рассматриваются свободные колебания струны то они описываются ур-ем ).

Сформулирует первую краевую задачу для ур-ия (1). Найти ф-ию определенную в области удовлетворяющую ур-ию для 0<x<l, t>0, граничным t>0 (2) и начальным условиям 0<x<l (3).

Теорема единственности: Возможно существование только одной ф-ии определенной в области и удовлетворяющей уравнению (4) начальным и граничным условиям: (5) если выполнены условия: 1) ф-ия и производные входящие в ур-ие (4) а также производная непрерывны на отрезке ; 2) коэффициенты и k(x) непрерывны на отрезке .

Д-во: допустим существует два решения рассматриваемой задачи и и рассмотрим разность . Ф-ия очевидно удовлетворяет однородному уравнению и однородным дополнительным условиям: ; а также условию 1) теоремы. Докажем что . Рассмотрим ф-ию (6) и покажем что она не зависит от t.

Ф-ия (6) называется полной энергией струны. Физический смысл ф-ии E(t): это полная энергия струны в момент времени t.

Продифференцируем E(t) по t, выполняя при этом дифференцирование под знаком интеграла: . Интегрируя по частям первое слагаемое правой части будем иметь: . Подстановка обращается в нуль в силу граничных условий (из следует и аналогично для x=l). Отсюда следует что т.е. E(t)=const. учитывая начальные условия получаем (7) т.к.

. Пользуясь формулой (7) и положительностью k и заключаем, что . Откуда и следует тождество . Пользуясь начальным условием, находим ,тем самым доказано что . Следовательно если существуют две функции и удовлетворяющие всем условиям теоремы то .

Б.2 в. 17 Принцип максимума для уравнения теплопроводности. Единственность решения первой краевой задачи и задачи Коши.

Процесс распространения температуры в стержне может быть описан функцией u(x,t) представляющей температуру в сечении x в момент времени t. Уравнение кот удовлетворяет ф-ия u(x,t) имеет вид: уравнение теплопроводности, где плотность теплового потока равная количеству тепла, протекшего в единицу времени через площадь в 1 , с – удельная теплоемкость, - плотность, F(x,t) – плотность тепловых источников в точке x в момент t. В частности если стержень однородный то ур-ие теплопроводности , если источники отсутствуют т.е. F(x,t)=0 то ур-ие теплопроводности имеет вид .

Принцип максимума. Если ф-ия u(x,t) определенная и непрерывная в замкнутой области и удовлетворяет уравнению теплопроводности (1) в точках области , то максимальное и минимальное значения ф-ии достигаются или в начальный момент или в точках границы x=0, или x=l.

Физический смысл этой теоремы: если температура на границе и в начальный момент не превосходит некоторого значения М, то при отсутствии источников внутри тела не может создаваться температура больше М.

Первая краевая задача состоит в отыскании решения ур-ия теплопроводности при , , удовлетворяющего условиям , , где , заданные функции.

Задача Коши о распределении температуры на бесконечной прямой: найти решение уравнения теплопроводности в области и удовлетворяющее условию , (), заданная ф-ия.

Теорема (единственности задачи Коши): Если и - непрерывные ограниченные во всей области изменения переменных ф-ии, удовлетворяющие ур-ию теплопроводности ( , t>0) (2) и условию () то (, ).

Теорема (единственности 1-й краевой задачи): Если две функции и определенные и непрерывные в области удовлетворяют уравнению теплопроводности (для , ), одинаковым начальным и граничным условиям, то