Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
9EnCT1h331.doc
Скачиваний:
25
Добавлен:
30.04.2022
Размер:
3.7 Mб
Скачать

2.4.2. Метод прямого расширения спектра

Важным свойством метода прямого расширения спектра можно считать то, что ширина спектра сигнала, модулирующего опорную частоту, а значит, и радиосигнала, определяется главным образом не скоростью передачи полезной информации, а параметрами ПСП. Элементарный импульс ПСП называют чипом. Каждый информационный бит после перемножения с ПСП будет отображаться многими чипами. (Например, один информационный бит отображается 128 чипами ПСП.) Скорость в радиоканале определяется, как произведение скорости передачи на выходе канального кодера и количества чипов за интервал одного бита. Обычно скорость передачи в радиоканале измеряют в мегачипах в секунду (Мчип/с).

Сигналы с расширенным спектром являются псевдослучайными, т. е. имеют свойства, аналогичные свойствам случайного процесса или шума, хотя формируются по вполне детерминированным алгоритмам. ПСП чаще всего является бинарной с элементами 0 и 1 и обладает свойствами, схожими со свойствами случайной бинарной последовательности.

Например, если на любом конечном интервале число нулей примерно равно числу единиц, то автокорреляционная функция такой последовательности близка к автокорреляционной функции случайной бинарной последовательности, в частности, имеет малые значения коэффициента корреляции между сдвинутыми друг относительно друга копиями одной и той же последовательности и т.д. Это свойство используется для распознавания ПСП.

Псевдослучайные последовательности обычно формируются с помощью логических цепочек, реализующих детерминированные алгоритмы. На рис. 2.5 приведен пример такой цепи [25], которая содержит регистр сдвига из последовательно соединенных элементов с двумя устойчивыми состояниями и некоторую логическую схему в цепи обратной связи.

Рис. 2.5. Генератор ПСП

Двоичная последовательность символов 0 и 1, хранящаяся в регистре, смещается вправо по регистру при подаче очередного тактового импульса; символ из последней ячейки регистра выдается на выход в качестве очередного символа последовательности; символы всех или некоторых ячеек регистра подаются в логическую цепь обратной связи, в которой формируется символ обратной связи, передаваемый в первую ячейку регистра.

Период следования тактовых импульсов определяет длительность элементарного символа (чипа) последовательности. Если логическая цепь обратной связи содержит только элементы типа "исключающее ИЛИ", которые применяются наиболее часто, данное устройство называется генератором линейной псевдослучайной последовательности (ПСП). В этом случае значение очередного символа на выходе цепи обратной связи определяется следующим рекуррентным соотношением:

, (2.6)

где символ “+” обозначает суммирование по модулю 2, а коэффициенты и символы принимают значения 0 или 1. Логическая цепь обратной связи в этом случае представляет собой сумматор по модулю 2.

Начальное состояние ячеек регистра и структура логической цепи обратной связи полностью определяют последующее состояние ячеек регистра. Если принять некоторое состояние регистра сдвига за исходное, то через N тактов это состояние вновь повторится. Если при этом регистрировать последовательность символов на выходе ячейки с номером I, то длина этой последовательности будет равна N. На последующих N тактах эта последовательность вновь повторится и т. д.

Число N называется периодом последовательности. Значение N при фиксированной длине регистра m зависит от числа ненулевых весовых коэффициентов с и расположения соответствующих отводов в регистре. Например, из равенства (2.6) следует, что если в какой-то момент времени состояние всех ячеек регистра оказывается равным 0, то все последующие элементы последовательности на выходе регистра будут нулевыми. Существует разных ненулевых состояний регистра сдвига. Следовательно, период линейной ПСП, формируемой регистром сдвига с m ячейками, не может превышать символов. ПСП с периодом , формируемые регистром сдвига с линейной обратной связью, называются последовательностями максимальной длины или, более коротко, М-последовательностями. Длительность периода повторения ПСП может составлять десятки-сотни часов.

Устройство, функциональная схема которого представлена на рис. 2.5, можно назвать цифровым автоматом. Если формируемая им последовательность описывается уравнением (2.6), то такие автоматы принято задавать характеристическим многочленом:

,

где и . Значение вектора полностью определяет структуру автомата формирования ПСП: если коэффициент , то это означает, что выход ячейки с номером I к цепи обратной связи не подключен; при I-й выход подключен.

Известно достаточно большое число способов формирования псевдослучайных последовательностей, статистические свойства которых хорошо изучены. У них автокорреляционная функция имеет ярко выраженный максимум, а взаимокорреляционная функция носит случайный шумоподобный характер с малым уровнем значений. Новые способы реализации ПСП получают и в настоящее время.

Можно использовать два способа получения радиосигнала с расширенным спектром. Например, сначала перемножить исходную битовую последовательность с выхода кодера канала на сигнал ПСП, тем самым расширить спектр. Затем полученным сигналом промодулировать колебания несущей частоты. При второй модуляции можно использовать методы фазовой модуляции (BPSK, QPSK) или амплитудно-фазовой (QAM). Пример построения такого способа формирования радиосигнала с расширенным спектром приведен на функциональной схеме рис. 2.6.

Рис. 2.6. Функциональная схема формирования радиосигнала с расширенным спектром

Фильтр основной полосы в этой схеме предназначен для получения модулирующего сигнала с требуемой формой спектральной плотности мощности и требуемой полосой частот. Однако теперь на входе фильтра сигнал имеет в раз более широкий спектр, так что и радиосигнал имеет в В раз более широкий спектр, чем обычный узкополосный радиосигнал.

Аналогичный результат получится, если вначале промодулировать битовой последовательностью колебания несущей частоты методами BPSK, QPSK или QAM, а затем осуществить модуляцию полученного радиосигнала импульсами ПСП.

Прямое расширение спектра осуществляется путем перемножения информационного сигнала на сигнал ПСП , формируемый из псевдослучайной последовательности в течение всего сеанса связи. В результате модулирующий сигнал можно записать:

.

На рис. 2.7 показан примерный вид участка исходной битовой последовательности, сигнала ПСП и их соответствующие спектры.

Рис. 2.7. Примерный вид соотношения битовой последовательности и ПСП

Сигналы с расширенным спектром имеют интересную особенность. При первом перемножении битовой последовательности с сигналом ПСП (в передатчике) происходит расширение спектра до полосы . В приемнике входной радиосигнал с расширенным спектром поступает на первый демодулятор, на который также подается такая же ПСП, что и была использована в передатчике. В результате перемножения входного радиосигнала с сигналом ПСП на выходе первого демодулятора получается радиосигнал, спектр которого вновь сужается и становится равным по ширине спектру канальной битовой последовательности. Важно заметить, что при первом перемножении (в передатчике) битовой последовательности с сигналом ПСП происходит расширение спектра, а второе перемножение (в демодуляторе приемника) с такой же ПСП, вновь сужает спектр до исходного спектра канальных битов. Это свойство сигналов с расширенным спектром играет весьма полезную роль в уменьшении негативного влияния помех. Допустим, что в радиоканале имеется узкополосная (преднамеренная или случайная) помеха, спектр которой находится в пределах расширенного спектра сигнала. При попадании помехи совместно с сигналом на вход приемника на первом демодуляторе сигнал подвергнется второму умножению на ПСП, его спектр сузится, а помеха подвергнется первому перемножению с ПСП и его спектр расширится и его энергия окажется "размазанной" по широкой области частот (см. рис. 2.8, а). При выделении полосовым фильтром (например, на промежуточной частоте) спектра полезного сигнала в его полосу будет попадать лишь малая доля энергии помехи. Поэтому даже сравнительно сильная узкополосная помеха окажет незначительное влияние.

При попадании на вход приемника широкополосной помехи совместно с полезным сигналом (рис. 2.8, б) после перемножения с ПСП пропорционально сузятся спектры и сигнала, и помехи. Если они имели разные полосы и разные центральные частоты, то помеха и сигнал могут быть разделены полосовым фильтром. Такая невосприимчивость к помехам делает привлекательным использование сигналов с расширенным спектром в условиях наличия помех.

В условиях многолучевого распространения сигнала отраженные копии будут приходить на вход приемника с запозданием относительно основного сигнала. Если задержка копий будет более длительности чипа, то их можно отделить от основного сигнала.

В узкополосном сигнале, модулированном битовыми импульсами, длительность битовой посылки довольно велика, и отраженные копии сигнала успевают наложиться на основной сигнал. Длительность чиповых импульсов намного меньше, поэтому отраженные сигналы могут не накладываться на основной сигнал.

Рис. 2.8. Воздействие помехи:

а – узкополосная помеха; б – широкополосная помеха

Следует обратить внимание еще на одно свойство сигналов с расширенным спектром. Поскольку ширина расширенного спектра радиосигнала одного канала значительно больше ширины спектра сигнала, полученного при частотном разделении каналов (узкополосных), то при одинаковой излучаемой мощности этих радиосигналов спектральная плотность мощности сигнала с расширенным спектром оказывается намного меньше и может даже не превышать спектральную плотность мощности шума. Это обеспечивает хорошую скрытность широкополосных сигналов.

Важным для систем подвижной связи является также отсутствие необходимости решать проблему распределения частот между различными абонентами, поскольку все абоненты используют одну и ту же полосу частот. Для узкополосных методов модуляции решение задачи частотного планирования обязательно.

Важной характеристикой широкополосного сигнала является его база, смысл которой заключается в относительном увеличении полосы частот передаваемого сигнала в радиоканале по сравнению с полосой частот битового (исходного) сигнала. Величина базы сигнала: . Обычно базу сигнала определяют в децибелах: . На практике удобнее определять базу сигнала как произведение ширины спектра исходного сигнала на длительность элементарного символа ПСП (чипа): . По многим причинам удобно использовать такую длительность чипа ПСП, чтобы база сигнала с расширенным спектром была целым числом. На приемной стороне удобно использовать понятие выигрыш обработки, величина которой численно равна величине базы сигнала и означает выигрыш за счет обратного сужения спектра от расширенного к исходному: .

Перечислим коротко некоторые свойства сигналов с прямым расширением спектра, наиболее важные с точки зрения организации множественного доступа в системах связи с подвижными объектами.

    • Множественный доступ. Если одновременно несколько абонентов используют канал передачи, то в канале одновременно присутствуют несколько сигналов с прямым расширением спектра. Каждый из этих сигналов занимает всю полосу канала. В приемнике сигнала конкретного абонента осуществляется обратная операция — свертывание сигнала этого абонента путем использования того же псевдослучайного сигнала, который был использован в передатчике этого абонента, Эта операция концентрирует мощность принимаемого широкополосного сигнала снова в узкой полосе частот, равной ширине спектра информационных символов. Если взаимная корреляционная функция между псевдослучайными сигналами данного абонента и других абонентов достаточно мала, то при когерентном приеме в информационную полосу приемника абонента попадет лишь незначительная доля мощности сигналов остальных абонентов. Сигнал конкретного абонента будет принят верно.

    • Многолучевая интерференция. Если псевдослучайный сигнал, используемый для расширения спектра, имеет идеальную автокорреляционную функцию, значения которой вне интервала равны нулю, и если принимаемый сигнал и копия этого сигнала в другом луче сдвинуты во времени на величину, большую , то при сворачивании сигнала его копия может рассматриваться как мешающая интерференция, вносящая лишь малую долю мощности в информационную полосу.

    • Узкополосная помеха. При когерентном приеме в приемнике осуществляется умножение принятого сигнала на копию псевдослучайного сигнала, используемого для расширения спектра в передатчике. Следовательно, в приемнике будет осуществляться операция расширения спектра узкополосной помехи, аналогичная той, которая выполнялась с информационным сигналом в передатчике. Следовательно, спектр узкополосной помехи в приемнике будет расширен в В раз, где В — коэффициент расширения, так что в информационную полосу частот попадет лишь малая доля мощности помехи, в В раз меньше исходной мощности помехи.

    • Вероятность перехвата. Так как сигнал с прямым расширением спектра занимает всю полосу частот системы в течение всего времени передачи, то его излучаемая мощность, приходящаяся на 1 Гц полосы, будет иметь очень малые значения. Следовательно, обнаружение такого сигнала является очень трудной задачей.

Применение широкополосных сигналов имеет свои достоинства и недостатки, в целом присущие любому способу их формирования.

Достоинства широкополосных сигналов:

    • генерирование необходимых псевдослучайных сигналов может быть обеспечено простыми устройствами (регистрами сдвига);

    • операция расширения спектра может быть реализована простым умножением или сложением цифровых сигналов по модулю 2;

    • генератор несущего колебания является простым, так как необходимо генерировать гармоническое несущее колебание только с одной частотой;

    • может быть реализован когерентный прием сигнала с прямым расширением спектра;

    • нет необходимости обеспечивать синхронизацию между абонентами системы.

Недостатки широкополосных сигналов:

    1. выравнивание и поддержание синхронизации между генерируемым в приемнике и содержащимся в принимаемом сигнале псевдослучайными кодами является трудной задачей. Синхронизация должна поддерживаться с точностью до малой доли длительности элементарного символа;

    2. правильный прием информации обеспечивается только при высокой точности временной синхронизации, когда ошибка составляет малую долю длительности элементарного символа, что ограничивает возможность уменьшения длительности этого символа и, следовательно, возможность расширения полосы лишь до 10...20 МГц. Таким образом, существует ограничение на увеличение коэффициента расширения спектра;

    3. мощность сигнала, принимаемого от близких к БС абонентов, намного превышает мощность сигнала далеких абонентов. Следовательно "близкий" абонент постоянно создает очень мощную помеху "далекому" абоненту, часто делая прием его сигнала невозможным. Эта проблема "близкий — далекий" может быть решена применением системы управления мощностью, излучаемой пользовательской станцией и базовой станцией в направлении пользовательской. Цель управления — обеспечить одинаковую среднюю мощность сигналов разных пользователей на входе приемника базовой станции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]