
Какую работу нужно написать?
Лекция №23 полиядерные ароматические углеводороды
План
Полиядерные арены с конденсированными циклами.
Полиядерные арены с изолированными циклами.
Полиядерные арены с конденсированными циклами
Классификация, номенклатура, изомерия
Различают три основных типа конденсированных систем: 1) линейно конденсированные (нафталин, антрацен); 2) ангулярно конденсированные (фенантрен); 4) пери-конденсированные (пирен).
Нафталин имеет 4 одинаковых - и 4 одинаковых -положения; существует два монозамещенных нафталина - - и -. Для указания положения заместителей используют также нумерацию атомов в циклах.
Антрацен имеет три набора одинаковых положений: (1-,4-,5-,8-); (2-,3-,6-,7-); (9-,10-). Таким образом, существует три монозамещенных антрацена (1-, 2- и 9-).
Фенантрен содержит 5 пар равноценных положений: 1 и 8, 2 и 7, 3 и 6, 4 и 5, 9 и 10. Для монозамещенных фенантренов существует 5 изомеров.
Методы получения
Г
лавным
источником конденсированных ароматических
углеводородов является каменноугольная
смола, которая содержит 8-12% нафталина,
4-5% фенантрена, 1-1,8% антрацена. Нафталин
выделяют также из продуктов переработки
нефти. Масло, получаемое при каталитическом
риформинге бензина обогащено
алкилнафталинами, которые переводят в
нафталин путем гидродеалкилирования
в присутствии смеси оксидов Со и Мо.
Физические свойства и строение
Нафталин, антрацен и фенантрен – бесцветные кристаллические вещества. Фенанатрен имеет более низкую температуру плавления и лучшую растворимость, чем антрацен.
Молекулы нафталина, антрацена и фенантрена имеют плоское строение, однако длины связей С-С в них различны. В нафталине и антрацене наименьшей длиной и наибольшей кратностью обладает связь С(1)-С(2), в фенантрене – связь С(9)-С(10).
Правило Хюккеля об ароматичности замкнутой -электронной системы справедливо для моноциклических систем. На полициклические конденсированные системы оно может быть перенесено при условии, что общие для двух циклов связи не вносят серьезных возмущений в -электронную систему по сравнению с соответствующими аннуленами, а лишь обеспечивают необходимую компланарность. Правило Хюккеля выполняется для полициклических систем, имеющих атомы, общие для двух циклов. Нафталин (содержит 10 -электронов), а также антрацен и фенантрен (содержат по 14 -электронов) являются ароматическими углеводородами. Ароматическими свойствами обладает электронный аналог и изомер нафталина – азулен, содержащий конденсированные семи- и пятичленный циклы. Существенный вклад в его строение вносит биполярная структура, представляющая собой сочетание ядер циклопентадиенил-аниона и катиона тропилия:
а
зулен
Для соединений, имеющих атомы, общие для трех циклов, правило Хюккеля неприменимо. Например, пирен является ароматическим углеводородом, хотя его -система содержит 16 электронов, т е. не подчиняется формуле (4n+2).
Конденсированные ароматические углеводороды стабилизированы в меньшей степени, чем бензол. Энергия делокализации нафталина, определенная из теплот гидрирования, составляет 255 кДж/моль, что меньше, чем для двух изолированных бензольных ядер (150 кДж/моль х 2 = 300 кДж/моль). Энергия стабилизации антрацена составляет 350, а фенантрена - 385 кДж/моль, что меньше утроенной энергии стабилизации бензола.
Химические свойства
Реакции электрофильного замещения
Нафталин, антрацен и фенантрен вступают в реакции электрофильного замещения легче, чем бензол. Это связано с меньшими потерями энергии стабилизации на стадии образования -комплекса. Потеря энергии стабилизации в результате нарушения ароматической системы при образовании -комплекса в бензоле составляет 150 кДж/моль. Аналогичная величина для нафталина, в котором после разрушения ароматической системы одного кольца остается ароматическая система бензола, составит 255-150 = 105 кДж/моль. В результате нарушения ароматичности центральных колец в антрацене и фенантрене каждый из них будет содержать по два изолированных бензольных ядра и потеря энергии стабилизации составит 350 - 2х150 = 50 кДж/моль для антрацена и 385 - 2х150 = 85 кДж/моль для фенантрена. В случае нарушения ароматичности периферийных ядер в антрацене и фенантрене остается ароматическая система нафталина и потери энергии стабилизации составят 350 – 255 = 95 кДж/моль для анатрацена и 385 – 255 = 130 кДж/моль для фенантрена.
Из приведенных данных можно сделать вывод, что центральные ядра в антрацене и фенантрене будут более реакционноспособными, чем периферийные. Электрофильное замещение в этих системах в большинстве случаев будет идти в 9,10-положения.
Электрофильное замещение в нафталине протекает преимущественно в - положение. Направление атаки электрофила определяется относительной стабильностью -комплексов, ведущих к продуктам замещения по - и - положениям. Для аренониевого иона, образующегося при атаке по -положению, можно изобразить две энергетически выгодные резонансные структуры, в которых не затрагивается ароматическая система второго кольца, тогда как при атаке по -положению - только одну.
Энергетически менее выгодные резонансные структуры, в которых нарушена ароматичность обоих колец, полностью исключить нельзя, однако их вклад в резонансную стабилизацию невелик.
Нафталин нитруется в более мягких условиях, чем бензол, с образованием в качестве основного продукта -нитронафталина.
Галогенирование нафталина также идет гораздо легче, чем галогенирование бензола. Последний можно использовать как растворитель в этих реакциях. Бром реагирует более селективно, чем хлор.
Состав продуктов ацилирования нафталина зависит от природы растворителя.
Возможно такая селективность ацилирования нафталина связана с большим объемом комплекса CH3COCl . AlCl3 . PhNO2 по сравнению с комплексом CH3COCl . AlCl3 . CS2.
Сульфирование нафталина является классическим примером проявления термодинамического контроля состава продуктов реакции. В очень мягких условиях образуется только -нафталинсульфокислота. Этому условию отвечает сульфирование нафталина хлорсульфоновой кислотой при низких температурах. Соотношение изомеров при сульфировании 96%-ной серной кислотой зависит от температуры: в мягких условиях преобладает продукт кинетического контроля - -нафталинсульфокислота, в более жестких условиях преобладает термодинамически более стабильная -нафталинсульфокислота.
Антрацен и фенантрен. Электрофильное замещение в этих конденсированных системах может протекать как по классическому механизму SEAr с образованием аренониевых ионов, так и по механизму присоединения-отщепления.
Доказано, что галогенирование и нитрование антрацена в мягких условиях протекают через промежуточное образование продуктов 9,10-присоединения, которые легко превращаются в 9-производные антрацена.
Приведенные примеры демонстрируют "диеновый" характер антрацена и его склонность к реакциям 1,4-присоединения, характерным для сопряженных диенов.
В то же время, ацилирование антрацена проводят в условиях, типичных для процессов SE(Ar).
В фенантрене углерод-углеродная связь 9-10 проявляет свойства двойной связи в алкенах. Так, бромирование фенантрена при низкой температуре в растворе CCl4 приводит к преимущественному образованию продукта 9,10-присоединения.
В более жестких условиях или в присутствии кислоты Льюиса образуется только 9-бромфенантрен.
Экспериментальные данные показывают, что не всегда можно заранее предсказать результат конкретной реакции электрофильного замещения в конденсированных системах. Например, ацилирование фенантрена не приводит к образованию 9-ацетилфенантрена, а протекает следующим образом:
2) Окисление
Окисление конденсированных ароматических углеводородов приводит к различным продуктам в зависимости от используемого реагента и условий реакции. Реагенты на основе хрома (VI) в кислой среде окисляют нафталин и алкилнафталины до нафтохинонов, тогда как бихромат натрия в водном растворе окисляет только алкильные группы. Окисление нафталина перманганатом калия в щелочной среде сопровождается деструкцией одного ароматического кольца с образованием моноциклических дикарбоновых кислот:
Антрацен гладко окисляется бихроматом натрия в серной кислоте или оксидом хрома (VI) в уксусной кислоте до антрахинона:
Гидрирование
Конденсированные ароматические углеводороды гидрируется легче, чем бензол. При каталитическом гидрировании нафталина происходит последовательное восстановление ароматических колец.
А
нтрацен
и фенантрен гидрируются до
9,10-дигидропроизводных.