Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Sbor_z_u_m (1)

.pdf
Скачиваний:
79
Добавлен:
08.02.2015
Размер:
6.56 Mб
Скачать

Очевидно, что точка должна удовлетворять данному уравнению:

– верное равенство.

Следует отметить, что такая проверка является лишь частичной. Если мы неправильно

вычислили производную в точке , то выполненная подстановка нам ничем не поможет. Рассмотрим еще два примера.

Пример 5

Составить уравнение касательной к графику функции в точке с абсциссой

Уравнение касательной составим по формуле

1)Вычислим значение функции в точке :

2)Найдем производную. Дважды используем правило дифференцирования сложной функции:

3) Вычислим значение производной в точке

:

4) Подставим значения , и в формулу :

Готово.

Выполним частичную проверку:

Подставим точку в найденное уравнение:

; ; – верное равенство.

Пример 6

171

Составить уравнение касательной к графику функции в точке с абсциссой

Полное решение и образец оформления в конце урока.

В задаче на нахождение уравнения касательной очень важно ВНИМАТЕЛЬНО и аккуратно выполнить вычисления, привести уравнение прямой к общему виду.

Дифференциал функции одной переменной для приближенных вычислений

Коль скоро мы не объяснили (на данный момент) строго, что такое производная функции, то не имеет смысла объяснять, и что такое дифференциал функции. В самой примитивной формулировке дифференциал – это «почти то же самое, что и производная». Точнее – это производная, умноженная на приращение аргумента функции.

Производная функции чаще всего обозначается через .

Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек») Дифференциал функции одной переменной записывается в следующем виде:

Другой вариант записи: Простейшая задача: Найти дифференциал функции

1)Первый этап. Найдем производную:

2)Второй этап. Запишем дифференциал:

Готово.

Дифференциал функции одной или нескольких переменных чаще всего используют для

приближенных вычислений.

Помимо других задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции. Кроме того, как и для производной, для дифференциала существует понятие дифференциала в точке. И такие примеры мы тоже рассмотрим.

Пример 7

Найти дифференциал функции .

Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:

(корень пятой степени относится именно к синусу). Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли

избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:

172

Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено

выражение . Найдем производную, используя правило дифференцирования сложной функции два раза:

Запишем дифференциал, при этом снова представим

в первоначальном «красивом»

виде:

 

Готово.

Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).

Пример 8

Найти дифференциал функции . Это пример для самостоятельного решения.

Следующие два примера на нахождение дифференциала в точке.

Пример 9

Вычислить дифференциал функции в точке Найдем производную:

Производная вроде бы найдена. Но в это всё предстоит еще подставлять число, поэтому результат максимально упрощаем:

Труды были не напрасны, записываем дифференциал:

173

Теперь вычислим дифференциал в точке :

В значок дифференциала единицу подставлять не нужно, он немного из другой оперы.

Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на . Окончательно:

Пример 10

 

 

Вычислить дифференциал функции

в точке

. В ходе решения

производную максимально упростить.

 

 

Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.

Вторая производная

Всё очень просто. Вторая производная – это производная от первой производной:

Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»).

Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий,

например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое, и почему в дроби d не сокращены.

Рассмотрим простейший пример. Найдем вторую производную от функции . Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:

Теперь находим вторую производную:

Готово.

Рассмотрим более содержательные примеры.

Пример 11

Найти вторую производную функции Найдем первую производную:

174

На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности,

применив известную тригонометрическую формулу . Точнее говоря,

использовать формулу будем в обратном направлении: :

Находим вторую производную:

Готово.

Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :

Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.

Отметим, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.

Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.

Например: Вычислим значение найденной второй производной в точке :

Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.

Пример 12

Найти вторую производную функции . Найти . Это пример для самостоятельного решения.

Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но значительно реже.

Решения и ответы:

175

Пример 2: Найдем производную:

Вычислим значение функции в точке

:

Пример 4: Найдем производную:

 

Вычислим производную в заданной точке:

Пример 6: Уравнение касательной составим по формуле

1)Вычислим значение функции в точке :

2)Найдем производную. Перед дифференцированием функцию выгодно упростить:

3) Вычислим значение производной в точке

:

4) Подставим значения , и в формулу :

176

Пример 8: Преобразуем функцию:

Найдем производную:

Запишем дифференциал:

Пример 10: Найдем производную:

Запишем дифференциал:

Вычислим дифференциал в точке : .

Пример 12: Найдем первую производную:

Найдем вторую производную:

177

Вычислим:

.

7.3. Частные производные. Примеры решений

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции. Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно

записывается как , при этом переменные , называются независимыми переменными или аргументами.

Пример: - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная

парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и

«обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.

Пример 1

Найти частные производные первого и второго порядка функции Сначала найдем частные производные первого порядка. Их две.

178

Обозначения:

или – частная производная по «икс»

или – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменная считается

константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом.

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае,

если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме.

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за

знак производной, то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить

нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3)Используем табличные производные и .

(4)Упрощаем ответ.

Теперь определим . Когда мы находим частную производную по «игрек», то переменная

считается константой (постоянным числом).

(1) Используем те же правила дифференцирования

;

. В первом

слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести

нельзя поскольку – уже константа.

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице

все «иксы» на «игреки». То есть данная таблица рАвно справедлива для (и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и

.

Итак, частные производные первого порядка найдены

179

Особенности вычисления частных производных

Подведем итог, чем же отличается нахождение частных производных от нахождения «обычных» производных функции одной переменной:

1)Когда мы находим частную производную , то переменная считается константой.

2)Когда мы находим частную производную , то переменная считается константой.

3)Правила и таблица производных элементарных функций справедливы и

применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения:

или – вторая производная по «икс»

или – вторая производная по «игрек»

или смешанная производная «по икс игрек»

или смешанная производная «по игрек икс» В понятии второй производной нет ничего сложного. Говоря простым языком, вторая

производная – это производная от первой производной.

Для наглядности я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную

и дифференцируем ее еще раз, но в

данном случае – уже по «игрек».

 

Аналогично:

 

Для практических примеров, когда все частные производные непрерывны, справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».

Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание, так как никаких чудесных равенств для проверки не существует.

180

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]