
Recovered_PDF_602
.pdf#18. •¥ § ¡ë¢ ©â¥ à⨪«¨ ¨ ¤à㣨¥ ®¯à¥- ¤¥«¨â¥«¨
‚л §- ¥в¥ ®¡ ав¨ª«пе a/an ¨ the, ®вбгвбв¢гой¨е ¢ агббª®¬ п§л- ª¥. •¥а¢л© ¯а¨-пв® ¯а®¨§¢®¤¨вм ®в one, ¢в®а®© | ®в that. “¤®¡-® бз¨в вм, зв® ¨¬¥¥вбп ¯гбв®© ав¨ª«м (= the zero article ¨«¨ ? article), ª®â®àë© ¯®áâ®ï--® ¨á¯®«ì§ã¥âáï ¢ àãá᪮¬ ï§ëª¥. ‚ -£«¨©áª®¬ ï§ëª¥ ¯ãá⮩ à⨪«ì, ª ª ¯à ¢¨«® (á à¥¤ç ©è¨¬¨ ¨áª«îç¥-¨ï¬¨), -¥ ¬®- ¦¥â áâ®ïâì ¯¥à¥¤ ¯¥à¥ç¨á«¨¬ë¬ áãé¥á⢨⥫ì-ë¬ ¢ ¥¤¨-á⢥--®¬ ç¨- á«¥ (¤«ï [S]-ä®à¬ë áãé¥á⢨⥫ì-®£® ⨯ [C]). ’ ª¨¬ ®¡à §®¬, äà § \Circle Is Squared" ¬®¦¥â ¯®ï¢¨âìáï à §¢¥ «¨èì ¢ £ §¥â-®¬ § £®«®¢ª¥. •ਢ¥¤•¥--®¥ ¯à ¢¨«® -¥ ®§- ç ¥â, çâ® ¢ í⮬ á«ãç ¥ -¥®¡å®¤¨¬® ¯®áâ - ¢¨âì a/an ¨«¨ the. €-£«¨©áª ï £à ¬¬ ⨪ âॡã¥â - «¨ç¨ï ª ª®£®- «¨¡® -¥¯ãá⮣® ®¯à¥¤¥«¨â¥«ï (= determiner, -¥ ¯ãâ âì á ¨§¢¥áâ-ë¬ ¢á¥¬ ¨§ ¬ ⥬ ⨪¨ determinant).
‚ áâàãªâãà-®© £à ¬¬ ⨪¥ -£«¨©áª®£® ï§ëª ª ®¯à¥¤¥«¨â¥«ï¬
®â-®áïâ: |
|
articles |
a/an, the, ? |
possessives |
my, his, her, its, our, your, their; |
|
Banach's, Newton's, etc. |
demonstratives |
this, that, these, those |
distributives |
each, every, either, neither, another, other |
relatives |
what(ever), which(ever), whose |
inde nites |
any, some, no |
quanti ers |
all, both, half, (a) little, (a) few, less, least, |
|
a lot of..., enough, much, many, more, most, several |
emphasizers |
such, suchlike |
ordinals |
rst, second,... |
cardinals |
zero, one, two, three,... |
ˆ-®£¤ ¯®á«¥¤-¨¥ ®â-®áïâ ª postdeterminers, ¨¬¥ï ¢ ¢¨¤ã, çâ® ®-¨ á«¥¤ãîâ § ®¯à¥¤¥«¨â¥«¥¬. €- «®£¨ç-® ¢ë¤¥«ïîâ ¨ predeterminers, â. ¥. á«®¢ , ®¡ëç-® ¯à¥¤¢ àïî騥 ®¯à¥¤¥«¨â¥«ì:
predeterminers such, suchlike, what, quite, all, both,..., once, double,...; 1/3, 5/6,... (fractions)
postdeterminers rst, second, superlatives, cardinals, ordinals
(Œ¥¦¤ã ¯à®ç¨¬, ordinals should precede cardinals when in use together.)
•¥ § ¡ë¢ ©â¥ à⨪«¨ ¨ ¤à㣨¥ ®¯à¥¤¥«¨â¥«¨ |
41 |
ˆ¬¥îâáï ¨ á«®¢ á ¯®£à -¨ç-ë¬ áâ âãᮬ, ¢à®¤¥ next, last, certain, same. ‚ â® ¦¥ ¢à¥¬ï -¥ - ¤® § ¡ë¢ âì, ç⮠ᯨ᮪ ®¯à¥¤¥«¨â¥«¥© -¥ ¯®¤«¥¦¨â à áè¨à¥-¨î ¯® ‚ 襬㠯ந§¢®«ã ¨«¨ £¨¯®â¥§¥. • ¯à¨¬¥à, á«®¢® \somewhat" ¨ ¢®¢á¥ - à¥ç¨¥.
•ਢ¥¤•¥¬ â ¡«¨æã á®ç¥â ¥¬®á⨠¤«ï 㪠§ --ëå ª« áᮢ ®¯à¥¤¥«¨- ⥫¥©:
|
[C] |
|
[U] |
|
|
|
|
|
[S] |
[P] |
|
|
|
|
|
a/an |
+ |
|
|
the |
+ |
+ |
+ |
? |
|
+ |
+ |
each, every, either, neither, another, |
+ |
|
|
(exactly, just) one |
|
|
|
many, (a) few, several, a number of... |
|
+ |
|
much, (a) little, less, least, a (good) deal of... |
|
|
+ |
more, most, a lot of..., plenty of..., enough |
|
+ |
+ |
what(ever), which(ever), whose, no, such, |
+ |
+ |
+ |
some, any, other |
|
|
|
|
|
|
|
Žâ¬¥âìâ¥, çâ® any ¨ some ¯¥à¥¤ [C]+[S] ª¢ «¨ä¨æ¨àãîâ (¨ ¯à®¨§- -®áïâ) ª ª stressed. •¥ § ¡ë¢ ©â¥, ç⮠㤠à¥-¨ï ¢ -£«¨©áª®¬ ï§ëª¥ ¬®£ãâ -¥á⨠á¬ëá«®¢ãî - £à㧪ã.
•®«¥§- ï ¤¥â «ì | ¢ ®¡ë¤¥--®¬ ã§ãᥠmuch ª ª determiner (¨«¨ ª ª pronoun) ¨á¯®«ì§ã¥âáï ¢ negative sentences, ¢ ¯®«®¦¨â¥«ì-ëå «ãç- è¥ ã¯®âॡ«ïâì a lot of..., a good deal of..., etc. (•®«®¦¨â¥«ì-ë¥ ¯à¥¤- «®¦¥-¨ï, ®¤- ª® ¦¥, ¯à¨-¨¬ îâ so much, too much, as much.) ‘«¥¤ã¥â ¯®¤ç¥àª-ãâì, çâ® ¢ - ãç-ëå ¯¥à¥¢®¤ å - §¢ --®¥ ®£à -¨ç¥-¨¥ - much (¨ many) -¥ ¤¥©áâ¢ã¥â. Káâ ⨠᪠§ âì, ¢ ä®à¬ «ì-®¬ ⥪á⥠¯à¨-ïâ® ¨§¡¥£ âì ª¢ -â®à®¢ a lot of..., a good deal of... ¨ ¨¬ ¯®¤®¡-ëå.

42 |
Russian ! English in Writing. # 18 |
‚®â ¥é•¥ தá⢥-- ï á¥à¨ï ¯à ¢¨«:
so/as/too/how + adjective +a/an + noun such a/an + adjective + noun quite/rather + a/an + adjective + noun rather + a/an/the + noun
a quite/rather + adjective + noun
•ਠí⮬ -¥ á«¥¤ã¥â ¯¨á âì such a/an + adjective + noun, ª®£¤ ‚ë - á ¬®¬ ¤¥«¥ ¨¬¥¥â¥ ¢ ¢¨¤ã so + adjective + a/an + noun. ‡ ¬¥âì⥠⠪¦¥, çâ® such a/an + noun ¯à¥¤¯®« £ ¥â gradeability.
Œ¥¦¤ã ¯à®ç¨¬, ¯® ¬-¥-¨î •. • âਤ¦ \quite does not | in good English | means `rather'; its two standard senses being (i) `completely, wholly, entirely, to the fullest extent'... (ii) `actually, truly, positively'...."
Žâ¬¥â¨¬ §¤¥áì ¦¥ ¯®«¥§-ãî â ¡«¨æã úáâ㯥-¥© à®áâ ª®«¨ç¥á⢠û:
[C] |
[U] |
|
|
all/every |
all |
most |
most |
many/far more |
much more |
many (more) |
much (more) |
a lot of ... |
a lot of ... |
some |
some |
several |
|
quite a few |
quite a little |
a few |
a little |
few |
little |
no |
no |
|
|
Grades of quantity.
•¥ § ¡ë¢ ©â¥ à⨪«¨ ¨ ¤à㣨¥ ®¯à¥¤¥«¨â¥«¨ |
43 |
ˆ§ á«¥¤ãî饩 â ¡«¨æë ¢¨¤-®, ª ª 㯮âॡ«ïâì predeterminer ⨯ all, both, half:
|
|
|
|
|
|
|
|
|
[C] |
|
|
|
|
|
|
|
|
|
[U] |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,! |
|
an, the, my, |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
half |
|
angle |
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
this, that |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,! |
the, my |
|
|
|
|
|
[S] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
half |
research |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
this, that |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
,! |
the, my, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
all |
side |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
this, that |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
,! |
|
the, my, |
|
angles |
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
half |
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
these, those |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,! |
the, my, |
|
|
|
|||
[P] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all |
|
progress |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
?, this, that |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
all |
|
,! |
the, my, |
|
|
|
sides |
|
|
|
|
|
|
|
|
||||||||
|
|
both |
|
|
|
|
|
?, these, those |
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|||||||||||||||||||||
|
|
Žâ¬¥âì⥠¤«ï ᥡï â ª¦¥ ª®-áâàãªæ¨¨ ⨯ all of us, each of them, |
|||||||||||||||||||||||
one of you, etc. ‚ á®ç¥â -¨ïå ¯®¤®¡-®£® த |
á áãé¥á⢨⥫ì-묨 ®¡ï- |
§ в¥«¥- -¥¯гбв®© ®¯а¥¤¥«¨в¥«м some of the integrals, any of Banach's theorems, most of the di culties, etc. Žвбгвбв¢¨¥ ®¯а¥¤¥«¨в¥«п, ¢®®¡- й¥ £®¢®ап, г-¨з⮦ ¥в of. …й•¥ ¤¥в «м | ¯®¬-¨в¥ ¢ а¨ -вл \all the space" ¨ \the whole space."
•®«ì§ã©â¥áì â ¡«¨çª®©:
one some any |
|
each many most |
|
none all several |
|
the rst |
+ of + the ... |
the last |
|
all but one |
|
the rest |
|
the majority |
|
|
|

44 Russian ! English in Writing. # 18
Ž¡а в¨в¥ ¢-¨¬ -¨¥, зв® a/an ¨б¯®«м§г¥вбп ¯¥а¥¤ one в®«мª® ¥б«¨ ¯¥а¥¤ ¯®б«¥¤-¨¬ б«®¢®¬ ¯а¨бгвбв¢г¥в ¯а¨« £ в¥«м-®¥ (в. ¥. an interesting/good one | нв® ¢¥а-®, -® a one appeared above | б®«¥ж¨§¬). •® б宦¨¬ ¯а¨з¨- ¬ ª®-бвагªж¨п the one of ... в ª¦¥ -¥¢®§¬®¦- .
•¥à¥¢®¤ç¨ªã - ãç-ëå ⥪á⮢, ¨ ®á®¡¥--® ¬ ⥬ ⨪ã, ¯à¨ à á- áâ -®¢ª¥ ®¯à¥¤¥«¨â¥«¥©, ¨ ¯à¥¦¤¥ ¢á¥£® à⨪«¥©, ¯®«¥§-® à㪮¢®¤- á⢮¢ âìáï ¨å ¡ãª¢ «ì-ë¬ á¬ëá«®¬. ‚ ç áâ-®áâ¨, \ /an" á⮨â à á- ᬠâਢ âì ª ª ú-¥ª®â®àë©û, \the" | ª ª ú¢¯®«-¥ ®¯à¥¤¥«•¥--ë© (íâ®â)û. ‚ë ¯®¬-¨â¥, çâ® -¥®¯à¥¤¥«•¥--ë© à⨪«ì í⨬®«®£¨ á¢ï§ë- ¢ îâ á -£«®-á ªá®-᪨¬ an | c one.)
’ ª¨¬ ®¡à §®¬,
\Given a vector space X and a subspace X0 of X, arrange the factor space X=X0."
Žâ¬¥â¨¬ §¤¥áì ¦¥, çâ® ¢ ª ç¥á⢥ a substitute word \One can only replace a countable noun." (M. Swan, Practical English Usage)
•¨ª®£¤ -¥ áâ ¢ì⥠a/an ¨«¨ the ¯à¨ - «¨ç¨¨ own. ‘«®¢® own ç áâ® ®â-®áïâ ª postdeterminers. •¥à¥¤ -¨¬ ¢á¥£¤ ¤®«¦¥- ¡ëâì ®¤¨- ¨§ possessives.
•¥ § ¡ë¢ ©â¥ ® -¥®¡å®¤¨¬®¬ ¡« £®§¢ã稨 (euphony) ¯à¨ ¢ë¡®à¥ ¬¥¦¤ã a ¨ an ¢ á«ãç ¥ á¯¥æ¨ «ì-ëå â¥à¬¨-®¢. ’ ª, ‚ ¬ -ã¦-® ¯¨á âì an f-algebra, a U -boat, an R-linear map, an ANR-space, etc. Žâ¬¥âì- â¥, çâ® ã ᮪à é¥-¨© ¢á¥£¤ ¤®«¦¥- ¡ëâì -¥¯ãá⮩ ®¯à¥¤¥«¨â¥«ì, § ¨áª«îç¥-¨¥¬ ªà®-¨¬®¢ (⨯ UNESCO, NATO).
‘«¥¤ã¥â §- âì -¥®¡å®¤¨¬®¥ ¨ ¢ ¦-®¥ ¯à ¢¨«®, á¢ï§ --®¥ á ª¢ -â®- ஬ áãé¥á⢮¢ -¨ï. Š¢ -â®à (9x)'(x) ¯®¤à®¡-® ç¨â ¥âáï there exists an element x such that '(x) holds. ”®à¬ã« (9x)(9y)'(x; y) ¯®«-®áâìî ç¨â ¥âáï â ª: there exist elements x and y such that '(x; y) holds. Š®- -¥ç-®, ¢ ®¡ëç-®¬ ⥪á⥠(¨ à¥ç¨) ¬-®£®¥ §¤¥áì ®¯ã᪠¥âáï. ޤ- ª® -¥ á⮨⠧ ¡ë¢ âì, çâ® ¢ íª§¨áâ¥-æ¨ «ì-ëå ª®-áâàãªæ¨ïå § ®¡®à®â®¬ (there is ..., there appear ..., etc.) ¯® -®à¬¥ ¨á¯®«ì§ã¥âáï -¥®¯à¥¤¥«•¥--®¥ áãé¥á⢨⥫ì-®¥. €à⨪«ì the §¤¥áì § ¯à¥é•¥-! •à ¢¨«® ¢¥áì¬ áâà®- £®¥. ’ ª, (9!x)'(x) ¢ëà ¦ îâ á«®¢ ¬¨ there exists a unique x such that '(x). ‚¯à®ç¥¬, ᥪà¥âë ®¡®à®â®¢ there is/there are á⮫ì áãé¥á⢥-- -ë, çâ® ¨¬ ¡ã¤¥â 㤥«•¥- á ¬®áâ®ï⥫ì-ë© ¯ã-ªâ. Žâ¬¥âì⥠§¤¥áì ¦¥, çâ® such ¢®®¡é¥ -¥ ¨á¯®«ì§ãîâ, ¥á«¨ ã áãé¥á⢨⥫ì-®£® ¯®áâ ¢«¥- ®¯à¥¤¥«•¥--ë© à⨪«ì ¨«¨ ®¤¨- ¨§ demonstratives ¨«¨ possessives.
‚ ¦-ë© ¢®¯à®á | ¯à¨¬¥-¥-¨¥ ®¯à¥¤¥«¨â¥«¥© ¯à¨ áá뫪 å - -ã- ¬¥à®¢ --ë¥ ¨«¨ ¨¬¥-®¢ --ë¥ «¥¬¬ë, ¯à¥¤«®¦¥-¨ï ¨ â. ¯. ‚¥à-ãî
•¥ § ¡ë¢ ©â¥ à⨪«¨ ¨ ¤à㣨¥ ®¯à¥¤¥«¨â¥«¨ |
45 |
áâà ⥣¨î «¥£ª® ¯®-ïâì - á«¥¤ãî饬 ¯à¨¬¥à¥. |
…᫨ ‚ë áä®à¬ã«¨- |
஢ «¨ ⥮६ã 3.5 ¨, - ª®-¥æ, ¯®á«¥ ¯à¥¤¢ à¨â¥«ì-ëå à áá㦤¥-¨© ¯¥à¥å®¤¨â¥ ª ¥•¥ ¤®ª § ⥫ìáâ¢ã, â® ¯¥à¥¤ ‚ ¬¨ ®âªàë¢ îâáï ¤¢¥ ¢®§- ¬®¦-®áâ¨. ‚ë (á ¨§¢¥áâ-®© ¨, ¢ ®¡é¥¬, -¥¤®¯ãá⨬®© ¨£à¨¢®áâìî) ¬®¦¥â¥ ᪠§ âì:
\The time has come to prove the theorem." ˆ«¨ ¦¥ ¡®«¥¥ ª ¤¥¬¨ç-®:
\We now prove Theorem 3.5."
Ž¡¥ ª®-áâàãªæ¨¨ £à ¬¬ â¨ç¥áª¨ ª®à४â-ë. ‚ ¯¥à¢®¬ á«ãç ¥ 㪠§ -¨¥ - à áᬠâਢ ¥¬ãî ⥮६㠤 ¥•â ®¯à¥¤¥«•¥--ë© à⨪«ì the. ‚® ¢â®- ஬ ¢ ਠ-⥠Theorem 3.5 ï¥âáï ¨¬¥-¥¬ ᮡá⢥--ë¬ (proper noun), ¯®¤à §ã¬¥¢ î騬 ®¤-®§- ç-ãî ®âá뫪㠪 ⥮६¥ 3.5. •ਠí⮬ à- ⨪«ì -¥ã¬¥áâ¥-.
…é•¥ ®¤- ¯®«¥§- ï â®-ª®áâì ¢ 㯮âॡ«¥-¨¨ à⨪«ï. •à ¢¨«ì-® ¯¨á âì: \the Sobolev Embedding Theorem" ¨«¨ ¦¥ \Sobolev's Embedding Theorem." Ž¡ê¥¤¨-¥-¨¥ íâ¨å ¤¢ãå ª®-áâàãªæ¨© ã§ãᮬ (¨ «¨-- £¢¨áâ ¬¨) -¥ ®¤®¡àï¥âáï. ‚¯à®ç¥¬, ¢ ਠ-â the famous Sobolev's Theorem ¢¯®«-¥ -®à¬ «¥-. Ž¡à â¨â¥ ¢-¨¬ -¨¥, çâ® âॡãîâ ®¯à¥¤¥«¨â¥«ï ¢ ਠ-âë á ¯à¨âï¦ â¥«ì-ë¬ ¯ ¤¥¦®¬, -¥ á¢ï§ --ë¥ á ᮡá⢥--묨 ¨¬¥- ¬¨ ⨯ \the author's theorem."
Žâ¬¥âì⥠⠪¦¥, çâ® ¥áâì ¢ªãá®¢ë¥ (¨«¨ ª®à¯®à ⨢-ë¥) ¤¥â «¨: - ¯à¨¬¥à, ¢ â¥å-¨ç¥áª®© «¨â¥à âãॠ¯à¨-ïâ® ¯¨á âì Eq. (5) ¨«¨ Equation (5) (á ¡®«ì让 ¡ãª¢ë), ¢ ¬ ⥬ â¨ç¥áª®© ¯¥à¨®¤¨ª¥ í⮠ᮣ« - è¥-¨¥ -¥ ¤¥©áâ¢ã¥â: ¢ -¥© ¯¨èãâ « ¯¨¤ à-® | (5).
‚®®¡é¥ £®¢®àï, ¥áâì ¯à ¢¨«® \normally one determiner is enough for a noun phrase." ‘ª ¦¥¬, ¢ ¢®¯à®á¨â¥«ì-ëå ¯à¥¤«®¦¥-¨ïå ⨯ I wonder what function acts here, áâ ¢¨âì à⨪«ì ¬¥¦¤ã what ¨ function § ¯à¥é¥-® (determiner 㦥 ¥áâì). •â® -¥ ®â¬¥â ¥â ¢®§¬®¦-®á⨠\what Green's function...." …é•¥ ®¤-® ¨áª«îç¥-¨¥ | ¯¥à¥¤ every (¢ ª ç¥á⢥ ®¯à¥¤¥«¨â¥«ï) ¬®¦¥â áâ®ïâì possessive. „«ï each ¢®§¬®¦¥- «¨èì ¢ à¨- -â each of my books ... (•ਠí⮬ my every book = each of my books. Šà®¬¥ ⮣®, ¢ ਠ-â á every of ... | í⮠᮫¥æ¨§¬.)
‚ á¢ï§¨ á ⥪ã騬 ®¡á㦤¥-¨¥¬ Genitive Case (¯à¨âï¦ â¥«ì-®- £® ¯ ¤¥¦ ) ®â¬¥âì⥠¯®«¥§-ë¥ ¤¥â «¨: Hahn{Banach's Theorem | íâ® -¥¢®§¬®¦-®¥ ®¡à §®¢ -¨¥ (祫®¢¥ª á ä ¬¨«¨¥© • -{• - å -¥ ¡ë«®). ‚ â® ¦¥ ¢à¥¬ï the Kre n Brothers' Theorem | ª®à४â-ë© ¢ ਠ-â. Ž¡®à®âë ⨯ Biot and Savart's law ¨ Hahn and Banach's Theorem áâ®«ì ¦¥ ã§ã «ì-ë. “ïá-¨â¥ â ª¦¥, çâ® å®âï ¢®§¬®¦-ë ®¡ ¢ëà ¦¥-¨ï the

46 Russian ! English in Writing. # 18
Minkowski inequality ¨ the Minkowski functional, ¤®¯ãá⨬ «¨èì ¢ à¨- -â: Minkowski's inequality (¯¨á âì Minkowski's functional -¥ á«¥¤ã¥â | ª «¨¡à®¢®ç- ï äã-ªæ¨ï -®á¨â ¨¬ï Œ¨-ª®¢áª®£®, -¥ ¯à¨- ¤«¥¦¨â Œ¨-ª®¢áª®¬ã, ¨ íâ®â ®ââ¥-®ª áãé¥á⢥-).
•ਬ¥-¥-¨¥ à⨪«¥© ¨¬¥¥â ¡®«ì讥 ª®«¨ç¥á⢮ ¤¥â «¥© ¨ â®-ª®- á⥩. „«ï ‚ 襣® ᢥ¤¥-¨ï áä®à¬ã«¨à㥬 -¥ª®â®àë¥ ¨§ -¨å, ®á®¡¥--® ¯®«¥§-ë¥ ‚ ¬ ¤«ï í¯¨§®¤¨ç¥áª¨å ¯¥à¥¢®¤®¢.
Ž¡à â¨â¥ ¢-¨¬ -¨¥, çâ® ¢ - ãç-ëå ⥪áâ å ¯®á«¥ £« £®«®¢ ú- ãç- -®£®û àï¤ (undergo, involve, maintain, present, e ect, etc.) áãé¥á⢨- ⥫ì-ë¥ ú- ãç-®£®û àï¤ (parametrization, dimension, conclusion, stability, etc.) ç á⮠㯮âॡ«ïîâ á zero article. ’ ª¦¥ -¥ áâ ¢ïâ -¥®¯à¥- ¤¥«•¥--ë© à⨪«ì ¯¥à¥¤ ú®â£« £®«ì-묨û áãé¥á⢨⥫ì-묨, ®§- - ç î騬¨ ¤¥©á⢨ï: process, advice, guidance, progress, research, information, resistance, activity, permission, admission, work, concern, value, etc. „¥â «¨ ã§ãá ‚ ¬ á«¥¤ã¥â ᢥàïâì á ®¡à §æ®¬.
€à⨪«¨ ¯à¨ ¯¥à¥ç¨á«¥-¨¨ ®¡ëç-® -¥ ¯®¢â®àïîâ: à⨪«ì (ç é¥ the) ¯¥à¥¤ ª ¦¤ë¬ á«®¢®¬ ᯨ᪠ᮧ¤ •¥â ï¢-ë© í¬ä â¨ç¥áª¨© ®ââ¥- -®ª.
Žá®¡¥--®áâì the ¢ ⮬, çâ® ¥£® ¯®áâ -®¢ª ¯¥à¥¤ ¯à¨« £ ⥫ì-ë¬ ¯à¥¢à é ¥â ¯®á«¥¤-¥¥ ¢ áãé¥á⢨⥫ì-®¥, â. ¥. the ᯮᮡ¥- ª த®- ®¡à §®¢ -¨î. (•à ¢¤ , ¢®§-¨ª î饥 áãé¥á⢨⥫ì-®¥ -¥¯®«-®æ¥--® | -¥ ¤®¯ã᪠¥â Genitive Case, ¬-®¦¥á⢥--®£® ç¨á« , ᪫®-ï¥âáï ª ª they ¨ â. ¯.)
• ¤•¥¦-®¥ ®áâ®à®¦-®¥ ¯à ¢¨«® á®á⮨⠢ ⮬, çâ®¡ë ¯¥à¥¤ same, ¯¥à¥¤ ®à¤¨- « ¬¨ ¨ ¯¥à¥¤ ¯à¨« £ ⥫ì-묨 ¢ ¯à¥¢®á室-®© á⥯¥-¨ ¢á¥£¤ áâ ¢¨âì ®¯à¥¤¥«•¥--ë© à⨪«ì. •â® ‚ ¬ -¨ª®£¤ -¥ ¯®¢à¥¤¨â.
‡ ¯à¥â¨â¥«ì-ë¥ § ª®-ë, à §ã¬¥¥âáï, -ã¦-® §- âì £®à §¤® ⢕¥à¦¥, 祬 úà §à¥è¨â¥«ì-ë¥û | ¨áª«îç¥-¨ï. •¥ ¨á¯®«ì§®¢ âì ª ¦¤ë© à § ᢮¨ ⥮à¥â¨ç¥áª¨¥ ¯à ¢ -¥ áâ®«ì ¯à¥¤®á㤨⥫ì-®, ª ª ¤¥©á⢮¢ âì ¢®¯à¥ª¨ § ¯à¥â ¬. Œ¥¦¤ã ⥬ -£«¨©áª¨© ï§ëª, ª ª ¨ «î¡®¥ ॠ«ì-®¥ á।á⢮ ®¡é¥-¨ï, ®âªàë¢ ¥â è¨à®ç ©è¨¥ ¯à®áâ®àë ¤«ï ᢮¡®¤-®£® á ¬®¢ëà ¦¥-¨ï. ‚®â ¤¢ ®â-®áïé¨åáï ª í⮬ã 㪠§ -¨ï ¨§ £à ¬¬ ⨪¨ R. Quirk et al.:
\Virtually all non-count nouns can be treated as count nouns when used in classi catory senses."
\Count nouns can be used as non-count in a generic sense." („¥ä¨á ¢ á«®¢¥ non-count ¢ë¤ •¥â ¢ •. Š¢•¥àª¥ -£«¨ç -¨- .)
• §¢ --л¥ ¢®§¬®¦-®бв¨ з бв® ¨б¯®«м§говбп. ’ ª, ¯®б«¥¤-¨© ¯а¨-
•¥¬ ⨯¨ç¥- ¯à¨ ¯®áâ஥-¨¨ ¯®-ï⨩: the temperature of base of rod; the
•¥ § ¡ë¢ ©â¥ à⨪«¨ ¨ ¤à㣨¥ ®¯à¥¤¥«¨â¥«¨ |
47 |
area of cross section; a eld of characteristic zero; an operator of nite rank, etc.
‚®®¡é¥ ¢ -£«¨©áª®¬ ï§ëª¥ § 䨪á¨à®¢ - â¥-¤¥-æ¨ï ¨á¯®«ì§®- ¢ âì áãé¥á⢨⥫ì-ë¥ (®¡ëç-® ⨯ [U]) ¢ âਡã⨢-ëå ¨ - à¥ç-ëå ¯à¥¤«®¦-ëå ®¡®à®â å (in attributive and adverbial prepositional phrases) ¡¥§ à⨪«ï. •ਠí⮬ â ª ï â¥-¤¥-æ¨ï á⮫ì ᨫì- , çâ® à⨪«ì ç áâ® -¥ áâ ¢ïâ ¤ ¦¥ ¯¥à¥¤ [C]-nouns, ®áãé¥á⢫ïî騬¨ ⥠¦¥ äã-ª- 樨 (- ¯à¨¬¥à, a question of principle, a statement of fact, the de nition of powerset, without apparent reason, in suitable fashion, with e ort, by induction, in di erential form). ‚ íâ® ¦¥ ¢à¥¬ï á⮨⠯®¤ç¥àª-ãâì, çâ® ¨ ¯®ï¢«¥-¨¥ -¥®¯à¥¤¥«•¥--®£® à⨪«ï ¢ ¯®¤®¡-ëå á«ãç ïå ¯à¨ [C]-noun ï¥âáï ¡¥áᯮà-®© -®à¬®© ¢ ¯®¤ ¢«ïî饬 ¡®«ìè¨-á⢥ á«ãç ¥¢.
‚ í⮩ á¢ï§¨ ®â¬¥âìâ¥, çâ® ¨á¯®«ì§ã¥¬ë¥ ¢ ᮢ६¥--ëå -£«¨©- ᪨å - ãç-ëå ⥪áâ å ®¡®§- ç¥-¨ï ¨¬¥îâ ᪫®--®áâì ¢ëáâ㯠âì ¢ ª - ç¥á⢥ ᮡá⢥--ëå ¨¬•¥-.
€ªªãà â- ï áâà ⥣¨ï á«®¢®ã¯®âॡ«¥-¨ï ¯à¥¤¯®« £ ¥â, çâ® £¤¥- â® ¢- ç «¥ ‚ë - ¯¨á «¨ \Let us consider a triangle ABC" (¨¬¥¥âáï ¢ ¢¨¤ã a triangle, say, ABC) ¨«¨ \Denote this n n-matrix by B" ¨ â. ¯. •®- á«¥ í⮣® ®¡ëç-® ¨á¯®«ì§ãîâ ¢ëà ¦¥-¨ï \the area of ABC", \the norm of B", etc. ˆ¬¥--® â ª®© ¤¥¬®ªà â¨ç¥áª¨©, « ¯¨¤ à-ë© áâ¨«ì ¯à¨-¨¬ - ¥â ¡®«ìè¨-á⢮ å®à®è¨å ¢â®à®¢ | ®-¨ ᪫®--ë ¨á¯®«ì§®¢ âì ¨¬¥- (á ¯ãáâë¬ à⨪«¥¬). •⮬㠮¡à §æã ‚ ¬, ¯® à §¬ëè«¥-¨î, 楫¥á®- ®¡à §-® ¯®á«¥¤®¢ âì. •®«-®âë à ¤¨ ®¡à â¨â¥ ¢-¨¬ -¨¥, çâ® äà §ë ¢à®¤¥ \the f; a B and an F ; for all x's", ¨áª«îç î騥 ¢§£«ï¤ - ®¡®§- - ç¥-¨ï ª ª - ¨¬¥- , â ª¦¥ ¢¥áì¬ ¨ ¢¥áì¬ -¥à¥¤ª¨. ‚ ਠ-âë \the function B, a matrix A, for all values of x" ¥áâ¥á⢥--¥¥ ¨, ¢® ¢á类¬ á«ãç ¥, ¢¯®«-¥ ª®à४â-ë. ‚®§¬®¦-®, ¨å ‚ë ¨ ¯à¥¤¯®ç╥⥠¤«ï ᥡï.
‡¤¥áì ¦¥ ¯®«¥§-® ¯®¤ç¥àª-ãâì, çâ® ¯à¨ «î¡®© «¨-¨¨ ¯®¢¥¤¥-¨ï ‚ ¬ ¤®«¦-® ®¡¥á¯¥ç¨¢ âì à §ã¬-ãî á¡ « -á¨à®¢ --®áâì ®¯à¥¤¥«¥-¨©. ‚®â ®¡à §ç¨ª¨:
A function f satisfying (3.2) is called a test function. The operator T # of Lemma 1 is the descent of T .
„«ï § ªà¥¯«¥-¨ï ‚ è¨å - ¢ëª®¢ ¯à¨¢¥¤•¥¬ ¤¢ ä®à¬ «ì-ëå ¨«- «îáâà ⨢-ëå úá㯥ନ-¨ªãàá û à ááâ -®¢ª¨ ®¯à¥¤¥«¨â¥«¥©. •¥à¢ë© ®âà ¦ ¥â ⥮à¥â¨ç¥áªãî ¢®§¬®¦-®áâì ¯®áâ஥-¨ï £à ¬¬ â¨ç¥áª¨ ¢¥à- -®£® ⥪áâ , ¨á¯®«ì§ãî饣® ¢ ª ç¥á⢥ ®¯à¥¤¥«¨â¥«¥© ¤«ï áãé¥á⢨- ⥫ì-ëå ⮫쪮 à⨪«¨.

48 |
Russian ! English in Writing. # 18 |
SUPERMINICOURSE I
For Friends of Articles
Employ only unmodi ed common nouns.
Always use one (and only one) of the articles: a, the, ?. Never leave a singular countable noun with the ? article.
Never put \the" before plural or countable nouns in writing about generalities.
There are no other rules.
‚®§¬®¦¥- ¨ ¢ ਠ-â, ¯à¨ ª®â®à®¬ à⨪«¥© -¥â ¢®¢á¥.
SUPERMINICOURSE II
For Enemies of Articles
Employ only common nouns.
Never use any of the articles: a, the, ?.
Never leave a noun phrase without a unique determiner. Your determiners are possessives and demonstratives. There are no other rules.
•।®áâ¥à¥¦¥-¨¥: ‚ë¡à ¢ ®¤¨- ¨§ ¯à¥¤«®¦¥--ëå (¨§ á®®¡à ¦¥- -¨© ¡¥§®¯ á-®á⨠| ¯®- -£«¨©áª¨) á㯥ନ-¨ªãàᮢ ¢ ª ç¥á⢥ ¯à ª- â¨ç¥áª®£® à㪮¢®¤á⢠(çâ® ¢®§¬®¦-® ⮫쪮 ¢ ¯ பᨧ¬¥ «¥-¨), ®£à - -¨ç¨¢ ©â¥ ‚ è¨ ¯¥à¥¢®¤ë ¨áª«îç¨â¥«ì-® ⥧¨á ¬¨ ᮡá⢥--ëå ¤®- ª« ¤®¢ - -¥¯à¥á⨦-ëå ª®-ä¥à¥-æ¨ïå.
•®«¥¥ £«ã¡®ª¨© - «¨§ ®á®¡¥--®á⥩ ¨á¯®«ì§®¢ -¨ï à⨪«¥© á¢ï- § - á ¢ëïá-¥-¨¥¬ ¨å äã-ªæ¨©. •¥ ¢¤ ¢ ïáì ¢® ¢á¥ ¤¥â «¨, ®â¬¥â¨¬, çâ®, - 室ïáì à冷¬ á áãé¥á⢨⥫ì-ë¬ â¨¯ [C] + [S], -¥®¯à¥¤¥«•¥--ë©
•¥ § ¡ë¢ ©â¥ à⨪«¨ ¨ ¤à㣨¥ ®¯à¥¤¥«¨â¥«¨ |
49 |
à⨪«ì ¨á¯®«-ï¥â nominating function, ¯à¨ à ᯮ«®¦¥-¨¨ ¯¥à¥¤ áã- |
|
é¥á⢨⥫ì-ë¬ à §àï¤ á [U] | aspective function. Ž¯à¥¤¥«•¥--ë© |
à- |
⨪«ì ®¡« ¤ ¥â ¨-¤¨¢¨¤ã «¨§¨àãî饩, ®£à -¨ç¨¢ î饩 ¨ ®¡®¡é î- 饩 (individualizing, restrictive and generic) äã-ªæ¨ï¬¨. The zero article ¨¬¥¥â ⮫쪮 nominating function.
•®«¥§-® ®â¬¥â¨âì, çâ® ¢ -¥ª®â®àëå á«ãç ïå [U]-noun ®¡ï§ ⥫ì-® ¯®ï¢«ï¥âáï á -¥®¯à¥¤¥«•¥--ë¬ à⨪«¥¬. ’ ª ¡ë¢ ¥â ¢ á«ãç ïå, ª®£¤ [U]-noun ¯à¥¬®¤¨ä¨æ¨à®¢ -® (â. ¥. ¬®¤¨ä¨æ¨à®¢ -® ¯®áâ ¢«¥--묨 ¯¥à¥¤ -¨¬ á«®¢ ¬¨) certain ¨«¨ particular ¨«¨ ª®£¤ íâ® áãé¥á⢨⥫ì- -®¥ ®¡ëç-® ¢ ¯à¥¤«®¦-ëå ®¡®à®â å (â®ç-¥¥, in attributive and adverbial prepositional phrases) ¯®á⬮¤¨ä¨æ¨à®¢ -® ¯à¨¤ â®ç-ë¬ ¯à¥¤«®¦¥-¨- ¥¬ (á ¯®¬®éìî ¯®á«¥¤ãî饩 § ¯¨á¨ clause). ˆ¬¥îâáï ¨ ¤à㣨¥ ¤¥â «¨ ¨á¯®«ì§®¢ -¨ï à⨪«¥©, ®¯à¥¤¥«•¥--ë¥ âà ¤¨æ¨ï¬¨ ã§ãá .
‚®®¡é¥ £®¢®àï, ¯®á⬮¤¨ä¨ª æ¨ï á¢ï§ - á ¨á¯®«ì§®¢ -¨¥¬ the ¯¥- । [C]-noun (¢ ®¡ï§ ⥫ì-®¬ ¯®à浪¥) ¨ á ¯®áâ -®¢ª®© a/an ¤«ï [U]- noun (ª ª £®¢®à¨âáï, if any). Ž¡ëç-ë¥ ¢ ਠ-âë: the operators de-ned by (5.2); according to a knowledge that stems from the earlier considerations. Žç¥-ì âॡ®¢ ⥫ì- ¯®á⬮¤¨ä¨ª æ¨ï á of-äà §®©, ª®- â®à ï ç é¥ ¢á¥£® ¢«¥ç•¥â the. Žâ¬¥â¨¬ §¤¥áì ¦¥, çâ® ª®-áâàãªæ¨¨ a kind/sort/type of operator ¨ kinds/xtypes/sorts of operators âॡãîâ ? article (¯®á«¥ of).
•г¦-® §- вм, зв® -¥®¯а¥¤¥«•¥--л© ав¨ª«м ¯а¥¤и¥бв¢г¥в [C]-noun, ¬®¤¨д¨ж¨а®¢ --®¬г б ¯®¬®ймо of-да §л, «¨им ¢ ⮬ б«гз ¥, ¥б«¨ нв® ¬®¤¨д¨ª ж¨п ®¯¨б в¥«м- п (descriptive). ˆ- з¥ £®¢®ап, ¢ of-да §¥ а¥зм ¨¤•¥в ® ª з¥бв¢¥, ª®«¨з¥бв¢¥ ¨«¨ ¨§¬¥а¥-¨пе, б®бв ¢¥, ¬ в¥а¨ «¥, б®- ¤¥а¦ -¨¨, ¢®§а бв¥, а §¬¥а¥ ¨«¨ ба ¢-¥-¨¨. ‚ ®бв «м-ле б«гз пе ofда §л п¢«повбп ®£а -¨з¨¢ ой¨¬¨ ¨ ва¥¡гов ав¨ª«п the ¯¥а¥¤ ¨б- 室-л¬ бгй¥бв¢¨в¥«м-л¬.
•®«¥§-® ®â¬¥â¨âì, çâ® -¥ª®â®àë¥ ¯à¨« £ ⥫ì-ë¥ á ¬¨ ¯® ᥡ¥ ®£à -¨ç¨¢ îâ noun, ¯®â®¬ã ¢â®¬ â¨ç¥áª¨ âॡãîâ the. • ¯à¨¬¥à, right, wrong, very, only, main, principal, central, same, following, present, former, latter, proper, opposite, so-called, usual, upper, lower ¨ -¥ª®â®àë¥ ¤à㣨¥. — áâ® â ªãî äã-ªæ¨î -¥á•¥â superlative, ¯à¥¢®á室- ï á⥯¥-ì ¯à¨« £ ⥫ì-®£®.
Šáâ ⨠᪠§ âì, ¯®á«¥ áãé¥á⢨⥫ì-®£®, ª®â®à®¥ ¯à¥¤¢ à¥-® superlative, of áâ ¢¨âì -¥«ì§ï: ã§ãá íâ® § ¯à¥é ¥â. ‘«¥¤ã¥â ¯à¨¬¥-¨âì in, among ¨«¨ ¨-®¥ ¢ í⮬ த¥.