Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
13-18(1).doc
Скачиваний:
93
Добавлен:
07.02.2015
Размер:
1.44 Mб
Скачать

Функционирование рибосом

Роль мРНК в трансляции аналогична роли телеграфной ленты в этом примере: аа-тРНК присоединяются антикодонами к соответствующим кодонам мРНК, в результате чего аминокислотные остатки оказываются расположенными в той последовательности, в которой расположены кодоны в мРНК. Теперь остается лишь соединить аминокислотные остатки пептидной связью, чтобы получилась пептидная цепь (белок) с определенной первичной структурой. Таким образом, последовательность кодонов мРНК коллинеарна последовательности аминокислотных остатков в соответствующем белке. Эта схема отражает лишь принципиальный механизм перевода нуклеотидной последовательности (точнее, последовательности кодонов) в аминокислотную последовательность. Реальный процесс синтеза белков совершается при участии рибосом и ряда других факторов. Рибосомы содержат ферменты и другие белки, обеспечивающие взаимодействие между мРНК и аа-тРНК, образование пептидной связи и отделение готового белка. Весь процесс образования пептидной цепи можно разделить на три стадии: инициация, элонгация и терминация. Инициация. Синтез белка начинается с образования инициирующего комплекса . Поступившая из ядра в цитоплазму мРНК соединяется с малой (40S) субъединицей рибосомы и инициирующей аа-тРНК, роль которой при синтезе любого белка выполняет Met-TPHKMeT. Ме1-тРНКМет взаимодействует своим антикодоном с кодоном AUG на мРНК. Этот кодон называют инициирующим, с него начинается синтез любого белка (однако если этот кодон находится не в начале мРНК, то он кодирует включение в белок метионина). Затем к этому комплексу присоединяется большая (60S) субъединица рибосом (формируется полная рибосома). Ме1-тРНКМет взаимодействует с пептидильным центром большой субъединицы рибосомы. В образовании инициирующего комплекса участвуют внерибосомные белки — факторы инициации (около десятка разных белков); после образования комплекса они вновь переходят в цитозоль.

  1. Посттрансляционные изменения полипептидных цепей (посттрансляционный процессинг), значение. Ингибиторы матричных биосинтезов. Применение ингибиторов матричных биосинтезов как лекарств (дуаномицин, актиномицин D, тетрациклин, левомицетин и др.). Вирусы и бактериальные токсины как ингибиторы матричных биосинтезов в организме человека. Интерфероны.

Полипептидные цепи могут подвергаться структурным модификациям, либо будучи ещё связанными с рибосомами, либо после завершения синтеза. Эти конформационные и структурные изменения полипептидных цепей получили название посттрансляционных изменений. Они включают удаление части полипептидной цепи, ковалентное присоединение одного или нескольких низкомолекулярных лигандов, приобретение белком нативной конформации.

Многие модификации осуществляются в ЭР. Здесь происходят фолдинг полипептидных цепей, формирование уникальной третичной или четвертичной структуры белков. Причём для поддержания нативной конформации молекул огромное значение имеет правильное формирование дисульфидных связей.

Частичный протеолиз

Многие белки, секретируемые из клеток, первоначально синтезируются в виде молекул-предшественников, функционально неактивных. Удаление части полипептидной цепи специфическими эндопротеазами приводит к образованию активных молекул. Некоторые белки-предшественники расщепляются в ЭР или аппарате Гольджи, другие - после секреции. Так, неактивные предшественники секретируемых ферментов - зимогены - образуют активный фермент после расщепления по определённым участкам молекулы: зимоген панкреатической железы трипсиноген превращается в активный трипсин после секреции в тонкий кишечник.

Наглядным примером последовательного двухстадийного протеолиза служит образование активных форм пептидных гормонов (например, инсулина или глюкагона) из препрогормонов. Первоначально N-концевой сигнальный пептид молекулы-предшественника удаляется в ЭР в процессе синтеза белка и образуется неактивный прогормон. Затем прогормон в секреторных гранулах, формирующихся в аппарате Гольджи, подвергается действию эндо- и/или экзопротеаз и превращается в активный гормон.

Ковалентные модификации

Структурные белки и ферменты могут активироваться или инактивироваться в результате присоединения различных химических групп: фосфатных, ацильных, метальных, олигосахаридных и некоторых других.

  • Фосфорилирование белков осуществляется по гидроксильным группам серина, треонина и, реже, тирозина ферментами из группы протеинкиназ, тогда как дефосфорилирование катализируют гидролитические ферменты фосфопротеинфосфатазы .

  • Гликозилирование. Белки, входящие в состав плазматических мембран или секретирующиеся из клеток, подвергаются гликозилированию. Углеводные цепи присоединяются то гидроксильным группам серина или треонина (О-гликозилирование) либо аспарагина (N-гликозилирование). Последовательное наращивание углеводного фрагмента происходит в ЭР и аппарате Гольджи.

  • Многочисленным модификациям подвергаются боковые радикалы некоторых аминокислот: в тиреоглобулине йодируются остатки тирозина; в факторах свёртывания крови карбоксилируются остатки глутамата; в ЭР фибробластов гидроксилируются остатки пролина и лизина в цепях тропоколлагена.

ИНГИБИТОРЫ МАТРИЧНОГО БИОСИНТЕЗА

Существует большая группа веществ, ингибирующая синтез ДНК, РНК или белков. Некоторые из них нашли применение в медицине для лечения инфекционных болезней и опухолевых новообразований, а другие для человека оказались токсинами.

Действие ингибиторов матричных биосинтезов как лекарственных препаратов основано на модификации матриц: ДНК, РНК, белоксинтезирующего аппарата (прежде всего, рибосом) или на инактивации ферментов. Центральное место среди них принадлежит антибиотикам - разнообразным по химическому строению органическим соединениям, синтезируемым микроорганизмами, главным образом, микроскопическими грибами, и способным в малых количествах оказывать избирательное токсическое действие на другие микроорганизмы (табл. 4-5).

А. Ингибиторы репликации - противоопухолевые препараты

Антибиотики, взаимодействующие с ДНК, нарушают её матричную функцию и вызывают подавление процессов репликации и транскрипции. Их используют для лечения злокачественных новообразований и называют противоопухолевыми препаратами (см. раздел 15). Дауномицин, доксорубицин и некоторые другие взаимодействуют с молекулой ДНК таким образом, что циклическая структура этих антибиотиков встраивается ("интеркалирует") между парами оснований G≡C, а углеводный компонент занимает малую бороздку ДНК (рис. 4-43). Это ведёт к локальному изменению структуры ДНК и ингибированию репликации и транскрипции.

К "интеркаляторам" относят также антибиотик актиномицин D, блокирующий синтез ДНК и РНК у про- и эукариотов. Это соединение слишком токсично, чтобы использовать его в клинических целях, но его широко используют в научно-исследовательской работе для изучения процессинга первичных транскриптов РНК.

Избирательность действия противоопухолевых антибиотиков невелика и обеспечивается более высокой по сравнению с нормальными клетками скоростью синтеза ДНК и РНК, а также повышенной проницаемостью клеточных мембран опухолевых клеток. В то же время эти соединения токсичны для быстроделящихся нормальных клеток организма, таких как стволовые клетки кроветворной системы, клетки слизистой оболочки желудка и кишечника, фолликулов волос. В последние годы проводятся исследования по созданию препаратов, обеспечивающих доставку ингибитора только в опухолевые клетки. Это достигается связыванием цитотоксических антибиотиков с белками, рецепторы к которым имеются главным образом на опухолевых клетках (см. раздел 15).

К препаратам, останавливающим репликацию, относят алкилирующие агенты и ингибиторы ДНК-топоизомеразы II (одной из изоформ топоизомераз). Последние называют ингибиторами гираз, поскольку ДНК-гиразы - ферменты прокариотических клеток, ответственные за суперспира-лизацию ДНК; у эукариотов аналогичную функцию выполняют ДНК-топоизомеразы. Известно, что транскрипция некоторых генов возможна лишь при определённом уровне суперспирализации матрицы. Соединения, вмешивающиеся в работу ДНК-гираз, могут ингибировать или активировать синтез РНК. К ингибиторам гираз принадлежат налидиксовая кислота, новобиоцин и номермицин.

Рис. 4-43. Строение "интеркаляторов" - дауномицина и актиномицина D.

Б. Ингибиторы транскрипции и трансляции - антибактериальные препараты

К ингибиторам матричных синтезов, оказывающим противобактериальное действие, относят вещества, блокирующие синтез РНК или белка. В эту группу входит широко применяемый в клинике рифампицин, получаемый на основе природного антибиотика рифамицина. Антибиотики из семейства рифамицинов ингибируют только бактериальную ДНК-зависимую РНК-полимеразу,связываясь с β-субъединицей фермента и препятствуя инициации транскрипции (рис. 4-44). Их применяют для лечения туберкулёза, так как эти препараты не влияют на работу ядерных РНК-полимераз эукариотических клеток. Однако они могут ингибировать синтез митохондриальных РНК, хотя дозы препарата, при которых блокируется образование митохондриальных РНК, выше тех, что используют в лечении инфекционного заболевания.

Большая группа антибиотиков является ингибиторами трансляции (рис. 4-45): тетрацик-лины, эритромицин, пуромицин, хлорамфени-кол и аминогликозиды. Так, один из наиболее известных аминогликозидов стрептомицин ингибирует инициацию синтеза белка у прокариотов и вызывает ошибки в прочтении информации, закодированной в мРНК. Его часто назначают при лечении инфекционных заболеваний сердца. К антибиотикам широкого спектра действия относяттетрациклины. Они связываются с 30S субъединицей рибосомы и блокируют присоединение аминоацил-тРНК в А-центр рибосомы, тем самым нарушая элонгацию полипептидной цепи. Тетрациклины эффективны

Таблица 4-5. Антибиотики - ингибиторы матричных биосинтезов как лекарственные препараты

Антибиотики

Механизм действия

Ингибиторы репликации

 

Дауномицин Доксорубицин

Внедряются («интеркалируют») между парами оснований ДНК и нарушают репликацию и транскрипцию

Актинрмицин D

 

Мелфалан

Алкилирует ДНК и нарушает репликацию

Номермицин Новобиоцин

Ингибируют ДНК-топоизомеразу П, ответственную за суперспирализацию ДНК, нарушают репликацию и транскрипцию

Ингибиторы транскрипции

 

Рифамицины

Связываются с бактериальной РНК-полимеразой и препятствуют началу транскрипции

Ингибиторы трансляции

 

Тетрациклины

Ингибируют элонгацию: связываются с 30S субъединицей рибосомы и блокируют присоединение аа-тРНК в А-центр

Левомицетин

Присоединяется к 50S субъединице рибосомы и ингибирует пептидилтрансферазную активность

Эритромицин

Присоединяется к 50S субъединице рибосомы и ингибирует транслокацию

Стрептомицин

Ингибирует инициацию трансляции. Связывается с 30S субъединицей рибосомы, вызывает ошибки в прочтении информации, закодированной в мРНК

в отношении возбудителей многих болезней. Левомицетин (хлорамфеникол) также относят к антибиотикам широкого спектра действия. Он ингибирует синтез белка за счёт присоединения к 50S субъединице рибосомы, подавляя пептидилтрансферазную активность.

Пенициллины и цефалоспорины относят к группе β-лактамных антибиотиков, продуцируемых плесенью штамма Penicillum. В структуре этих молекул присутствует реакционно-способное β-лактамное кольцо, вызывающее ингибирование синтеза клеточных стенок у грамотрицательных микроорганизмов. Действие этих антибиотиков направлено на фермент, обеспечивающий образование поперечных связей в структуре белков клеточной стенки бактерий. Необратимое ингибирование активности этого фермента ведёт к образованию изменённых клеточных стенок и гибели бактерий в процессе размножения.

Надо сказать, что препараты антибактериальной группы отличаются высокой избирательностью

Рис. 4-44. Антибиотики из семейства рифамицинов.

Рис. 4-45. Некоторые антибиотики-ингибиторы синтеза белков у прокариотов.

и сравнительно мало токсичны для человека. Это объясняется различиями в структуре РНК-полимераз, РНК и белков рибосом в эукариотических и прокариотических клетках.

В. Вирусы и токсины - ингибиторы матричных синтезов в эукариотических клетках

Вирусы

Генетический материал вирусов представлен молекулой ДНК или РНК. Он, как правило, невелик и содержит информацию лишь о некоторых специфических белках и ферментах, необходимых для репродукции вируса (например, вирусов оспы, гриппа, полиомиелита, гепатита). Вскоре после заражения с высокой скоростью начинается синтез вирусных ДНК, РНК и белков с использованием ферментов и белков, субстратов и источников энергии клетки хозяина. При этом в инфицированных клетках прекращается синтез нуклеиновых кислот и белков, свойственных организму хозяина. Репродукция вирусных частиц идёт вплоть до гибели заражённой клетки.

Токсины

Причиной гибели людей при отравлении бледной поганкой Amanita phalloides является токсин - α-аманитин, который содержится в теле гриба и вызывает необратимую дисфункцию печени и почек. Высокая токсичность этого соединения для человека связана с тем, что оно ингибирует эукариотические РНК-полиме-разы. Наибольшую чувствительность к яду обнаруживает РНК-полимераза II, катализирующая синтез мРНК. Для α-аманитина LD50 (доза per os, при которой погибает 50% лиц, получивших токсин) составляет 0,1 мг/кг массы тела.

Чрезвычайно токсичен белок рицин, выделенный из клещевины обыкновенной. Он представляет собой N-гликозилазу, которая удаляет один остаток аденина из 28S рРНК большой субъединицы рибосомы и ингибирует синтез белка у эукариотов. Рицин - белковый компонент касторового масла, иногда используемого в качестве слабительного средства. Из-за высокой токсичности рицина лечение касторовым маслом проводят короткими курсами, так как длительное употребление может вызвать непрекращающийся понос, нарушение работы кишечника и даже гибель больного.

У человека развитие некоторых бактериальных инфекций сопровождается ингибированием матричных синтезов. Наиболее изученный пример - ингибирование синтеза белков в клетках слизистой оболочки зева и гортани энтеротоксином возбудителя дифтерии Corynebacterium diphteriae. Некоторые штаммы этого патогенного микроорганизма получают ген токсина от бактериального вируса, называемого β-фагом, который инфицирует бактерию и индуцирует синтез токсина - одноцепочечно-го белка с молекулярной массой 60 кД. В цитоплазме клеток хозяина под влиянием протеолитических ферментов токсин расщепляется на 2 фрагмента, один из которых является ферментом АДФ-рибозилтрансферазой. Этот фермент катализирует АДФ-рибозилирование и инактивацию фактора элонгации EF-2 по реакции:

EF-2 + NAD+ → АДФ-рибозил-ЕF-2 + никотинамид + Н+.

В условиях in vitro эта реакция обратима, но при рН и концентрации никотинамида, которые существуют в клетках, она становится необратимой. Модификация фактора EF-2 нарушает транслокацию рибосом, ведёт к прекращению биосинтеза белков в инфицированных клетках и к их гибели. С действием токсина связаны основные симптомы дифтерии.

Описаны и другие токсины бактериального и растительного происхождения, ингибирующие синтез и функциональную активность белков путём АДФ-рибозилирования или модификации рРНК.

Г. Интерфероны

Интерфероны - небольшие белки (гликопротеины), состоящие примерно из 160 аминокислотных остатков. Они сеьфетируются некоторыми клетками позвоночньж в ответ на заражение вирусами и препятствуют распространению вирусной инфекции. Этот класс белков синтезируется в исключительно малых количествах: от на-нограммов (1-9г) до пикограммов (10_12г), но является очень активным неспецифическим противовирусным агентом (106-109 единиц антивирусной активности на 1 мг белка). Это соответствует способности одной молекулы интерферона защищать от инфекции одну клетку.

Некоторые компоненты вирусных частиц (например, двухцепочечная РНК) индуцируют синтез по крайней мере 3 типов интерферонов. У человека имеются 14 генов, кодирующих α-интерфероны, которые продуцируются В-лимфоцитами и макрофагами, 5 генов β-интерферонов, обеспечивающих образование соответствующих белков фибробластами, и 1 ген γ-интерферона, экспрессия которого идёт в Т-лимфоцитах.

Связываясь с рецепторами на плазматической мембране заражённых клеток, эти белки, подобно белковым гормонам, стимулируют синтез ферментов, способных разрушать мРНК вирусов и прекращать синтез белков на рибосомах, препятствуя тем самым экспрессии вирусных генов в клетках эукариотов.

Исследование механизма действия интерферонов показало, что они:

  • ингибируют синтез белков, необходимых для репликации вирусов;

  • стимулируют синтез фермента олигонуклеотидполимеразы, катализирующего образование небольших количеств коротких олигоаденилатов: 2',5'-олиго (А). Эти олигонуклеотиды являются активаторами рибонуклеазы - фермента, расщепляющего матричные и рибосом-ныеРНК;

  • стимулируют синтез протеинкиназы, которая фосфорилирует и, тем самым, инактивирует фактор инициации eIF2:

eIF2 + АТФ → eIF2-OPO3H2 + АДФ.

В результате синтез всех белков в инфицированных клетках прекращается. Клетки погибают, но вместе с ними останавливается размножение вирусов, и начинается выздоровление. Таким образом, жертвуя небольшим количеством клеток, организм защищает себя от болезни.

В настоящее время интерфероны, полученные промышленным путём с использованием техники клонирования генов, широко используют при лечении обычной простуды, гриппа, полиомиелита, ветряной оспы, герпеса, вируса гепатита и других инфекций. Хорошие результаты показывает использование интерферонов в терапии некоторых видов злокачественных опухолей, главным образом, гемобластозов (см. раздел 15), хотя их роль в химиотерапии опухолей до настоящего времени остаётся малопонятной.

  1. Адаптивная регуляция активности генов у про- и эукориотов. Теория оперона. Функционирование оперонов, регулируемых по принципу индукции и репрессии. Роль энхансеров и селенсоров, амплификации и перестройки генов, процессинга, транспорта из ядра в цитоплазму и изменение стабильности мРНК в регуляции синтеза белков у эукариотов – основа онтогенеза и специализации органов и тканей у многоклеточного организма. Синтез гемоглобина у человека на стадиях: эмбрион → плод → взрослый организм.

Организмы адаптируются к меняющимся условиям окружающей среды путём изменения экспрессии (скорости транскрипции) генов. Этот процесс, в деталях изученный на бактериях и вирусах, включает взаимодействие специфических белков с участками ДНК в непосредственной близости от стартового участка транскрипции. При этом может происходить включение или выключение транскрипции. Эукариотические клетки используют тот же самый принцип, хотя в регуляции реализуются и некоторые другие более сложные механизмы.

А. Регуляция активности генов у прокариотов. Теория оперона

Исследования на клетках Е. coli позволили установить, что у бактерий существуют ферменты 3 типов:

  • конститутивные, присутствующие в клетках в постоянных количествах независимо от метаболического состояния организма (например, ферменты гликолиза);

  • индуцируемые, их концентрация в обычных условиях мала, но может возрастать в 100Q раз и более, если, например, в среду культивирования клеток добавить субстрат такого фермента;

  • репрессируемые, т.е. ферменты метаболических путей, синтез которых прекращается при добавлении в среду выращивания конечного продукта этих путей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]