- •И. А. Андрианов, д. В. Кочкин, с. Ю. Ржеуцкая
- •Учебное пособие
- •Оглавление
- •1. Основы языка 8
- •1.2.2 Простые типы данных 13
- •2. Работа с памятью 73
- •3. Основы объектно-ориентированного программирования 87
- •4.Обработка исключений 114
- •5. Шаблонные функции и классы. Библиотека стандартных шаблонов 130
- •6. Паттерны проектирования 159
- •7. Антипаттерны 211
- •9. Методы отладки и оптимизации кода 242
- •1. Основы языка
- •1.1.2 Понятие проекта
- •1.2 Простые типы данных
- •1.2.1 Понятие типа
- •1.2.2 Простые типы данных
- •1.2.3 Внутреннее представление простых типов
- •1.2.4 Ключевое слово typedef. Тип size_t
- •1.3 Константы и переменные
- •1.3.1 Литералы
- •1. Числовые константы:
- •2. Символьные константы:
- •1.3.2 Переменные
- •1.3.3 Описание переменных
- •1.4. Выражения. Преобразование типов
- •1.4.1 Операнды и операции
- •1.4.2 Приоритет операций
- •1.4.3 Преобразование типов
- •1.5 Ветвления и циклы
- •1.5.2 Циклы
- •1.6 Массивы, строки
- •1.6.1 Основные понятия
- •1.6.2 Встроенные массивы
- •1.6.3 Cтроки. Обработка строк с завершающим нулём
- •1.7 Указатели и ссылки. Связь указателей и массивов. Библиотека cstring
- •1.7.1 Понятия указателя и ссылки
- •1.7.2 Связь между массивами и указателями
- •1.7.3 Библиотека cstring
- •1.8 Использование типов vector и string
- •1.8.1 Шаблонный класс vector
- •1.8.2 Класс string
- •1.9 Структуры и объединения. Битовые поля
- •1.10.1 Понятие функции
- •1.10.2 Описание функции и прототип функции
- •1.11 Параметры функции. Способы передачи параметров
- •1.11.1 Параметры функции и глобальные переменные
- •1.11.2 Способы передачи параметров в функцию
- •1.11.3 Передача массивов в функцию
- •1.11.4 Параметры-константы
- •1.11.5 Значения параметров по умолчанию
- •1.12.1 Указатель на функцию
- •1.12.2 Функции с переменным числом параметров
- •1.12.3 Перегрузка функций
- •1.12.4 Встроенные (inline) функции
- •1.13 Рекурсивные функции
- •1.14 Пространства имён
- •1.15 Директивы препроцессора. Макросы
- •2. Работа с памятью
- •2.1 Управление выделением и освобождением памяти
- •2.1.1 Статическое и динамическое выделение памяти
- •2.1.2 Способы динамического выделения и освобождения памяти
- •2.2 Динамические структуры данных
- •2.2.1 Основные понятия
- •2.2.2 Примеры реализации динамических структур на основе указателей
- •3. Основы объектно-ориентированного программирования
- •3.1 Основные понятия ооп
- •3.2.1 Описание класса
- •3.2.2 Область видимости элементов класса. Инкапсуляция
- •3.2.3 Первые примеры
- •3.3. Конструкторы и деструкторы.
- •3.4 Указатель this
- •3.5 Перегрузка операций
- •3.6 Дружественные функции и классы
- •3.7 Статические элементы класса
- •3.8 Наследование и полиморфизм
- •3.8.1. Основные понятия
- •3.8.2 Одиночное наследование
- •3.8.3 Множественное наследование
- •3.8.4 Конструкторы и деструкторы классов-потомков
- •3.9. Полиморфизм при наследовании классов
- •3.9.1 Механизмы раннего и позднего связывания
- •3.9.2 Абстрактные классы
- •4.Обработка исключений
- •4.1 Основные понятия
- •4.2 Перехват исключений
- •4.3 Поиск обработчика исключений. Раскрутка стека.
- •4.4 Повторное возбуждение исключений
- •4.5 "Аппаратные" и "программные" исключения
- •4.6 Стандартные классы исключений
- •4.7 Спецификация исключений, возбуждаемых функцией
- •4.8 Исключения в конструкторах при наследовании
- •4.9. Исключения в деструкторах
- •5. Шаблонные функции и классы. Библиотека стандартных шаблонов
- •5.1 Шаблонные функции
- •5.2 Шаблонные классы
- •5.3 Специализация шаблонов
- •5.4 Шаблонные параметры шаблонов
- •5.5 Разработка шаблонных классов с настраиваемой функциональностью
- •5.6 Использование шаблонов для вычислений на этапе компиляции
- •5.7 Библиотека стандартных шаблонов (stl) – основные понятия
- •5.8 Последовательные контейнеры. Итераторы
- •5.9. Адаптеры контейнеров
- •5.10 Ассоциативные контейнеры
- •5.11 Алгоритмы
- •6. Паттерны проектирования
- •6.1 Порождающие шаблоны
- •6.2 Структурные шаблоны
- •6.3 Шаблоны поведения
- •6.4 Шаблон "фабричный метод" (Factory method)
- •6.5 Шаблон "одиночка" (Singleton)
- •6.6 Шаблон "итератор" (Iterator)
- •6.7 Шаблон "наблюдатель" (Observer)
- •6.8 Шаблон "пул объектов" (Object pool)
- •6.9 Шаблон "команда" (Command)
- •6. 10 Шаблон "посетитель" (Visitor)
- •6.11 Дополнительные задания
- •6.11.1 Шаблон Iterator
- •6.11.2 Шаблон Observer
- •6.11.3 Шаблоны Command и Observer
- •6.11.5 Шаблон Visitor
- •6.11.5 Разработка класса − контейнера
- •6.11.6 Оценка производительности кода
- •7. Антипаттерны
- •7.1 Программирование методом копирования и вставки (Copy-Paste Programming)
- •7.2 Спагетти-код (Spaghetti code)
- •7.3 Магические числа (Magic numbers)
- •7.4 Бездумное комментирование
- •7.5 Жесткое кодирование (Hard code)
- •7.6 Мягкое кодирование (Soft code)
- •7.7 Золотой молоток (Golden hammer)
- •7.8 Слепая вера (Blind faith)
- •7.9 Ненужная сложность (Accidental complexity)
- •7.10 Божественный объект (God Object)
- •7.11 Лодочный якорь (Boat anchor)
- •7.12 Поток лавы (Lava flow)
- •7.13 Изобретение велосипеда (Reinventing the wheel)
- •7.14 Программирование перебором (Programming by permutation)
- •8.1 Выведение типов
- •8.2 Списки инициализации
- •8.3 Улучшение процесса инициализации объектов
- •8.4 Цикл for по коллекции
- •8.5 Лямбда-функции
- •8.6 Константа нулевого указателя nullptr
- •8.7 "Умные" указатели
- •9. Методы отладки и оптимизации кода
- •9.1 Отладка кода
- •9.1.1 Основные этапы отладки
- •9.1.2 Инструменты и приёмы отладки
- •9.2 Оптимизация кода
- •9.2.1 Рекомендации по выполнению оптимизации
- •9.2.2 Методики оптимизации кода
- •Заключение
- •Библиографический список
6.11.5 Разработка класса − контейнера
Разработать класс − контейнер MyVector, аналогичный std::vector из стандартной библиотеки C++.
1. Контейнер не должен засорять память (вся выделенная память должна освобождаться).
2. Показать возможность хранения в контейнере объектов пользовательских типов.
3. Показать возможность хранения в качестве элементов контейнера самого контейнера. Например, класс Matrix на основе класса MyVector (MyVector<MyVector<int>> matrix).
4. Добавить возможность задания начального значения вектора с помощью списка инициализации.
5. Добавить возможность вставки нескольких значений с помощью списка инициализации.
6. Добавить возможность обхода элементов вектора с помощью цикла for для коллекций. Для этого необходимо предусмотреть функции begin() и end(), возвращающие итераторы.
6.11.6 Оценка производительности кода
Проанализировать производительность кода контейнера из предыдущего задания. Определить методы, выполнение которых занимает больше всего времени. Для анализа производительности можно воспользоваться приведенным ниже классом.
class BlockProfile
{
static std::map<const char*, float> mBlockTimeMap;
LARGE_INTEGER frequency, start, finish;
const char* mBlockName;
public:
BlockProfile(const char* blockName)
{
// Замер времени при входе в блок
mBlockName = blockName;
QueryPerformanceFrequency(&frequency);
QueryPerformanceCounter(&start);
}
~BlockProfile()
{
// Замер времени при выходе из блока и определение
// времени жизни объекта
QueryPerformanceCounter(&finish);
float delay = (float)(finish.QuadPart - start.QuadPart) /
frequency.QuadPart;
mBlockTimeMap[mBlockName] += delay;
}
// Печать итоговых результатов оценки производительности
static void printProfile()
{
float maxTime = 0;
for(std::map<const char*, float>::iterator it =
mBlockTimeMap.begin();
it != mBlockTimeMap.end();
++it)
{
maxTime = maxTime > it->second ? maxTime : it->second;
}
for(std::map<const char*, float>::iterator it =
mBlockTimeMap.begin();
it != mBlockTimeMap.end();
++it)
{
std::cout << it->first << ": "
<< it->second << " "
<< (int)(100.0 * (it->second / maxTime))
<< "%" << std::endl;
}
}
};
std::map<const char*, float> BlockProfile::mBlockTimeMap;
Работа данного класса основана на следующем принципе: в C++ при завершении блока объекты и переменные, созданные в блоке, уничтожаются. Объект класс BlockProfile создается вначале блока и замеряет время. При завершении блока он уничтожается и в деструкторе замеряет время второй раз. Вычитая из второго значения первое, можно получить время жизни данного объекта или время выполнения блока команд.
Объект класса BlockProfile получает в качестве параметра конструктора строку, описывающую данный блок. При многократном входе в блок задержка суммируется.
void fun1()
{
BlockProfile fun1("fun1");
for(int i = 0; i != 1000000; ++i)
{
double f = sqrt((double)i);
double f2 = f * f;
}
}
Перед завершением программы можно распечатать результат работы, вызвав метод BlockProfile::printProfile();
