- •Глава 1 Кинематика материальной точки и поступательного движения твердого тела
- •Глава 2 Динамика материальной точки
- •Глава 3 Работа и энергия
- •Глава 4 Динамика вращательного движения твердого тела
- •Глава 5 Элементы специальной теории относительности
- •Глава 6 Колебательное движение
- •Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •Сила тяжести и вес тела. Упругие силы. Силы трения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •Сила тяжести и вес тела. Упругие силы. Силы трения.
- •Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •Закон взаимосвязи массы и энергии. Кинетическая энергия в релятивистской динамике.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •Физические и математические маятники.
- •Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •Гидродинамика. Линии тока. Уравнение Бернулли.
- •Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •Обратимые и не обратимые процессы. Энтропия. Второй закон термодинамики.
- •Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •II закон Ньютона.
- •III закон Ньютона.
- •1.Кинематическое описание движения. Перемещение, скорость. Вычисление пройденного пути. Ускорение.
- •2.Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.
- •3.Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.
- •4. Степени свободы и обобщенные координаты. Число степеней свободы абсолютно твердого тела .
- •6)Система единиц си. Границы применимости классической механики.
- •7)Импульс, закон сохранения импульса. Применение закона сохранения импульса к абсолютно неупругому удару. Движение тел с переменной массой.
- •8)Момент импульса. Закон сохранения момента импульса.
- •9)Момент силы. Основное уравнение динамики вращательного движения.
- •10)Силы в природе. Силы сухого и вязкого трения.
- •11)Упругая сила. Ззакон Гука.
- •Консервативные и неконсервативные силы в механике. Потенциальная энергия. Работа силы.
- •Кинетическая энергия. Закон сохранения энергии в механике.
- •Закон всемирного тяготения. Движение в центральном поле. Космические скорости. Законы Кеплера.
- •Уравнение движения абсолютного твердого тела. Центр масс, примеры вычисления центра масс.
- •41)Твердые тела. Аморфные и кристаллические тела.
- •42)Анизотропия кристаллов. Дефекты кристаллов.
- •43)Фазовые переходы первого и второго рода. Кривая фазового равновесия.
- •44)Фазовая диаграмма состояния вещества. Тройная точка. Уравнение Клапейрона - Клаузиуса.
- •45)Уравнение гармонического колебания и его основные параметры.
- •46)Колебания груза под действием упругой силы(пружинный маятник).
- •47)Энергия гармонического колебания.
- •48)Физический и математический маятники. Приведенная длина и центр качания физического маятника.
- •49)Уравнение затухающих колебаний. Декремент затухания.
- •50)Действие периодической силы на затухающий гармонический осциллятор. Резонанс.
- •51)Сложение гармонических колебаний одинаковой частоты и направления. Векторная диаграмма.
- •52)Сложение гармонических колебаний разной частоты. Биения.
- •53)Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •54)Уравнение плоской гармонической волны и ее основные параметры: длина волны, волновое число, фазовая скорость волны. Продольные и поперечные волны.
- •55)Волновое уравнение. Фазовая скорость волны в твердых телах и жидкостях.
- •56)Скорость звука в газах
- •57)Передача информации с помощью волн.
- •58)Групповая скорость волны. Дисперсия.
- •59)Стоячие волны. Колебания струны.
- •60)Громкость и высота тона звука.
- •61)Эффект Доплера.
- •62)Физические измерения. Погрешности измерений.
- •1. Введение.
- •2. Основные кинематические понятия и характеристики.
- •3. Нормальное, тангенциальное и полное ускорения.
- •Угловая скорость и угловое ускорение.
- •1. Основные понятия кинематики
- •2. Перемещение точки и пройденный путь. Скорость. Вычисление пройденного пути
- •3. Ускорение при криволинейном движении
- •4. Кинематика вращательного движения
- •5. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея
- •6. Масса тела. Сила. Второй и третий законы Ньютона
- •7. Сила тяжести. Вес тела. Перегрузки. Невесомость
- •8. Импульс тела. Импульс силы. Закон сохранения импульса
- •9. Механическая работа и мощность
- •10. Кинетическая и потенциальная энергия
- •11. Закон сохранения полной механической энергии
- •12. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул
- •13. Идеальный газ. Основное уравнение мкт идеального газа
- •14. Абсолютная температура и её физический смысл
- •15. Газовые законы. Графики изопроцессов.
- •16. Состояние системы. Процесс. Первый закон (первое начало) термодинамики
- •17. Тепловые двигатели
- •1. Электризация тел. Закон сохранения электрического заряда. Закон Кулона
- •2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •3. Работа сил электростатического поля. Потенциал электростатического поля
- •4. Связь между напряженностью электростатического поля и потенциалом
- •5 . Проводники в электростатическом поле. Явление электростатической индукции. Диэлектрики в электростатическом поле
- •6. Электроемкость. Конденсаторы. Емкость плоского конденсатора
- •7. Соединение конденсаторов. Энергия заряженного конденсатора
- •8. Закон Ома для однородного участка цепи. Сопротивление проводников
- •9. Закон Джоуля - Ленца. Закон Ома для неоднородного участка цепи. Разветвленные цепи. Правила Кирхгофа
- •10. Взаимодействие токов. Магнитное поле. Магнитная индукция
- •11. Магнитное поле в веществе. Магнитные свойства вещества
- •12. Закон Ампера. Сила Лоренца
- •13. Ферромагнетики. Магнитный гистерезис. Применения ферромагнетизма. Природа ферромагнетизма
- •14. Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Токи Фуко
- •15. Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля
- •16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов
- •17. Основы квантовой теории металлов
- •19. Электрический ток в газах. Самостоятельный и несамостоятельный разряд
- •20. Электрический ток в вакууме. Термоэлектронная эмиссия Ламповый диод. Электронно-лучевая трубка
- •23. Свойства p-n- перехода. Полупроводниковые диоды. Транзисторы
- •24. Свободные электромагнитные колебания в контуре. Формула Томсона
- •25. Вынужденные электромагнитные колебания. Переменный ток
- •1.19. Центростремительное, тангенциальное и полное ускорения
- •§ 27. Ускорение при криволинейном движении.
1. Основные понятия кинематики
Механика – это наука о движении и взаимодействии макроскопических тел.
Классическая механика состоит из трех частей: кинематики, динамики и статики.
Кинематика изучает движение тел, без учета причин, которыми обусловлено это движение.
Основными задачами кинематики являются:
Описание с помощью формул, таблиц и графиков совершаемых телом движений.
Определение кинематических величин, характеризующих это движение.
Для описания движений в кинематике вводится ряд специальных понятий (материальная точка, абсолютно твердое тело, система отсчета, траектория и т.д.) и величин (путь, перемещение, скорость, ускорение и т.д.)
Механическим движением называют изменение положения тела относительно других тел в пространстве с течением времени.
Тело, относительно которого рассматривается движение других тел, называется телом отсчета.
Систему координат и прибор для отсчета времени, связанные с телом отсчета, называют системой отсчета.
Тело, деформациями которого в данных условиях движения можно пренебречь, называют абсолютно твердым телом.
Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой.
Линию, описываемую материальной точкой при своем движении, называют траекторией.
Любое движение твердого тела можно разделить на два вида движения: поступательное и вращательное.
Поступательным называют такое движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе.
Вращательным называют такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. (Ось вращения может находиться и вне тела).
2. Перемещение точки и пройденный путь. Скорость. Вычисление пройденного пути
Расстояние от точки А до точки В, отсчитанное вдоль траектории, называют пройденным путем. Иными словами, пройденный путь – это длина траектории, которую описывает материальная точка за данный промежуток времени.
Перемещением
называют вектор, соединяющий начальное
положение материальной точки с её
конечным положением
.
Величины, для задания которых достаточно лишь численного значения, называются скалярами. (Примеры: путь, время, масса, работа, мощность и т.д.)
Величины, характеризующиеся численным значением и направлением, называются векторами. (Примеры: перемещение, скорость, ускорение, сила, импульс и т.д.)
Положение
материальной точки в пространстве можно
задать при помощи радиуса-вектора
.
Если
перемещение точки за время
будет
равно
,
то под скоростью точки в данный момент
времени понимают предел, к которому
стремится отношение
при
(при
стремящемся
к нулю).
=
.
Вектор скорости направлен по касательной к траектории в соответствующей точке.
При
различия
между элементарным путем
и
модулем элементарного перемещения
невелико,
поэтому
,
т.е.
.
Если задана зависимость скорости от времени, то пройденный путь можно найти, пользуясь формулой
В
случае прямолинейного равномерного
движения
.
Прямолинейное равнопеременное движение. Ускорение. Физический смысл ускорения. Вычисление мгновенной скорости и пройденного пути при равнопеременном движении
Движение, при котором за любые равные промежутки времени скорость тела изменяется на одну и ту же величину, называется равнопеременным.
Быстрота изменения скорости материальной точки характеризуется ускорением
,
или
,
т.е.
.
Физический смысл ускорения состоит в том, что оно является скоростью изменения скорости.
Если
в начальный момент времени скорость
тела равна
,
то в любой момент времени t модуль
скорости тела
.
Если
ускорение постоянно, то модуль мгновенной
скорости
Пройденный путь (при равнопеременном движении) можно найти по формуле:
.
Для нахождения пройденного пути (в случае, если ускорение постоянно) также пользуются формулами:
и
.
