Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Векторы перемещения, мгновенной скорости и мгновенного ускорения при криволинейном движении. Векторы нормального и тангенциал...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.58 Mб
Скачать

1.Кинематическое описание движения. Перемещение, скорость. Вычисление пройденного пути. Ускорение.

Кинематика изучает движение без выявления причин, вызывающих это движение. Кинематика является разделом механики. Главной задачей кинематики является математическое определение положения и характеристик движения точек или тел во времени.

Основные кинематические величины:

- Перемещение( ) –вектор, соединяющий начальную и конечную точки.

r – радиус-вектор, определяет положение МТ в пространстве.

- Скорость – отношение пути ко времени.

- Путь – множество точек через которое прошло тело.

 

- Ускорение – скорость изменения скорости, то есть первая производная от скорости.

2.Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию. Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости.

Изменение величины скорости за единицу времени – это тангенциальное ускорение:

 Где 𝛖τ, 𝛖0 – величины скоростей в момент времени t0 + Δt и t0 соответственно. Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Полное ускорение при равнопеременном криволинейном движении тела равно:

-угловая скорость показывает, на какой угол поворачивается точка при равномерном движении по окружности за единицу времени. Единица измерения в СИ  - рад/с.

Плоское вращение – это вращение всех векторов скоростей точек тела в одной плоскости. 

3.Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Нормальное (центростремительное) ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

https://studfiles.net/preview/5707928/

4. Степени свободы и обобщенные координаты. Число степеней свободы абсолютно твердого тела .

Степени свободы — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы.

Независимые параметры qi (i=1, 2, ..., s) любой размерности, число которых равно числу s степеней свободы механической системы и которые однозначно определяют положение системы. Закон движения системы в обобщенных координатах даётся s уравнениями вида qi=qi(call), где t — время. Обобщенными координатами пользуются при решении многих задач, особенно когда система подчинена связям, налагающим ограничения на её движение. При этом значительно уменьшается число уравнений, описывающих движение системы, по сравнению, например, с уравнениями в декартовых координатах. В системах с бесконечно большим числом степеней свободы (сплошные среды, физ. поля) обобщенных координат являются особые функции пространственных координат и времени, наз. потенциалами, волн. функциями и т. п.

Твердое тело имеет шесть степеней свободы. Отметим, что твердое тело, одна из точек которого неподвижно закреплена, может только вращаться вокруг этой неподвижной точки, имеет три степени свободы.

Твердое тело, которое может только вращаться вокруг закрепленной оси, имеет одну степень свободы.

Если же твердое тело может скользить вдоль закрепленной оси и одновременно вращаться вокруг нее, то число степеней свободы равно двум.

5)Основная задача динамики. Понятие состояния в механике. Законы Ньютона.

Динамика — раздел механики, в котором изучаются причины возникновения механического движения.

Основная задача динамики

  • Прямая задача динамики: по заданному характеру движения определить равнодействующую сил, действующих на тело.

  • Обратная задача динамики: по заданным силам определить характер движения тела.

Законы Ньютона

1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.

2-й: В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

где  — ускорение тела,  — силы, приложенные к материальной точке, а  — её масса, или

3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению