- •Глава 1 Кинематика материальной точки и поступательного движения твердого тела
- •Глава 2 Динамика материальной точки
- •Глава 3 Работа и энергия
- •Глава 4 Динамика вращательного движения твердого тела
- •Глава 5 Элементы специальной теории относительности
- •Глава 6 Колебательное движение
- •Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •Сила тяжести и вес тела. Упругие силы. Силы трения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •Сила тяжести и вес тела. Упругие силы. Силы трения.
- •Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •Закон взаимосвязи массы и энергии. Кинетическая энергия в релятивистской динамике.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •Физические и математические маятники.
- •Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •Гидродинамика. Линии тока. Уравнение Бернулли.
- •Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •Обратимые и не обратимые процессы. Энтропия. Второй закон термодинамики.
- •Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •II закон Ньютона.
- •III закон Ньютона.
- •1.Кинематическое описание движения. Перемещение, скорость. Вычисление пройденного пути. Ускорение.
- •2.Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.
- •3.Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.
- •4. Степени свободы и обобщенные координаты. Число степеней свободы абсолютно твердого тела .
- •6)Система единиц си. Границы применимости классической механики.
- •7)Импульс, закон сохранения импульса. Применение закона сохранения импульса к абсолютно неупругому удару. Движение тел с переменной массой.
- •8)Момент импульса. Закон сохранения момента импульса.
- •9)Момент силы. Основное уравнение динамики вращательного движения.
- •10)Силы в природе. Силы сухого и вязкого трения.
- •11)Упругая сила. Ззакон Гука.
- •Консервативные и неконсервативные силы в механике. Потенциальная энергия. Работа силы.
- •Кинетическая энергия. Закон сохранения энергии в механике.
- •Закон всемирного тяготения. Движение в центральном поле. Космические скорости. Законы Кеплера.
- •Уравнение движения абсолютного твердого тела. Центр масс, примеры вычисления центра масс.
- •41)Твердые тела. Аморфные и кристаллические тела.
- •42)Анизотропия кристаллов. Дефекты кристаллов.
- •43)Фазовые переходы первого и второго рода. Кривая фазового равновесия.
- •44)Фазовая диаграмма состояния вещества. Тройная точка. Уравнение Клапейрона - Клаузиуса.
- •45)Уравнение гармонического колебания и его основные параметры.
- •46)Колебания груза под действием упругой силы(пружинный маятник).
- •47)Энергия гармонического колебания.
- •48)Физический и математический маятники. Приведенная длина и центр качания физического маятника.
- •49)Уравнение затухающих колебаний. Декремент затухания.
- •50)Действие периодической силы на затухающий гармонический осциллятор. Резонанс.
- •51)Сложение гармонических колебаний одинаковой частоты и направления. Векторная диаграмма.
- •52)Сложение гармонических колебаний разной частоты. Биения.
- •53)Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •54)Уравнение плоской гармонической волны и ее основные параметры: длина волны, волновое число, фазовая скорость волны. Продольные и поперечные волны.
- •55)Волновое уравнение. Фазовая скорость волны в твердых телах и жидкостях.
- •56)Скорость звука в газах
- •57)Передача информации с помощью волн.
- •58)Групповая скорость волны. Дисперсия.
- •59)Стоячие волны. Колебания струны.
- •60)Громкость и высота тона звука.
- •61)Эффект Доплера.
- •62)Физические измерения. Погрешности измерений.
- •1. Введение.
- •2. Основные кинематические понятия и характеристики.
- •3. Нормальное, тангенциальное и полное ускорения.
- •Угловая скорость и угловое ускорение.
- •1. Основные понятия кинематики
- •2. Перемещение точки и пройденный путь. Скорость. Вычисление пройденного пути
- •3. Ускорение при криволинейном движении
- •4. Кинематика вращательного движения
- •5. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея
- •6. Масса тела. Сила. Второй и третий законы Ньютона
- •7. Сила тяжести. Вес тела. Перегрузки. Невесомость
- •8. Импульс тела. Импульс силы. Закон сохранения импульса
- •9. Механическая работа и мощность
- •10. Кинетическая и потенциальная энергия
- •11. Закон сохранения полной механической энергии
- •12. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул
- •13. Идеальный газ. Основное уравнение мкт идеального газа
- •14. Абсолютная температура и её физический смысл
- •15. Газовые законы. Графики изопроцессов.
- •16. Состояние системы. Процесс. Первый закон (первое начало) термодинамики
- •17. Тепловые двигатели
- •1. Электризация тел. Закон сохранения электрического заряда. Закон Кулона
- •2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •3. Работа сил электростатического поля. Потенциал электростатического поля
- •4. Связь между напряженностью электростатического поля и потенциалом
- •5 . Проводники в электростатическом поле. Явление электростатической индукции. Диэлектрики в электростатическом поле
- •6. Электроемкость. Конденсаторы. Емкость плоского конденсатора
- •7. Соединение конденсаторов. Энергия заряженного конденсатора
- •8. Закон Ома для однородного участка цепи. Сопротивление проводников
- •9. Закон Джоуля - Ленца. Закон Ома для неоднородного участка цепи. Разветвленные цепи. Правила Кирхгофа
- •10. Взаимодействие токов. Магнитное поле. Магнитная индукция
- •11. Магнитное поле в веществе. Магнитные свойства вещества
- •12. Закон Ампера. Сила Лоренца
- •13. Ферромагнетики. Магнитный гистерезис. Применения ферромагнетизма. Природа ферромагнетизма
- •14. Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Токи Фуко
- •15. Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля
- •16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов
- •17. Основы квантовой теории металлов
- •19. Электрический ток в газах. Самостоятельный и несамостоятельный разряд
- •20. Электрический ток в вакууме. Термоэлектронная эмиссия Ламповый диод. Электронно-лучевая трубка
- •23. Свойства p-n- перехода. Полупроводниковые диоды. Транзисторы
- •24. Свободные электромагнитные колебания в контуре. Формула Томсона
- •25. Вынужденные электромагнитные колебания. Переменный ток
- •1.19. Центростремительное, тангенциальное и полное ускорения
- •§ 27. Ускорение при криволинейном движении.
Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
Моментом импульса т. наз. величина физически равная векторному произведению радиуса вектора т. на ее импульс L=[r*p] p=mV L=[r*mV] L=Iw lw –напр. в одну сторону.
Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — скалярная величина.
Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.
Момент импульса замкнутой системы сохраняется.
Момент
импульса
частицы
относительно некоторого начала отсчёта
определяется векторным произведением
ее радиус-вектора и импульса:
где
—
радиус-вектор частицы относительно
выбранного неподвижного в данной системе
отсчета начала отсчёта,
—
импульс частицы.
В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.
Уравнение моментов. Найдем скорость изменения момента импульса тела.
dL/dt = ([dri/dt·pi] + [ri·dpi/dt]). (7.4)
Первое слагаемое в выражении (7.4) равняется нулю, поскольку производная от радиуса по времени, являющаяся скоростью iой части тела, параллельна ее импульсу. Второе слагаемое преобразуем, воспользовавшись 2ым законом Ньютона:
dpi/dt = Fi + Fik*, где Fi и Fik* - соответственно сумма внешних и внутренних силы, действующие на iый элемент тела.
Подставив это выражение в (7.4), получим, что скорость изменения момента импульса равняется сумме моментов внешних Mi и внутренних Mik* сил. Причем, последний из них равен нулю. Таким образом,
dL/dt = (Mi + Mi*) = Mi = M. (7.5)
Следовательно, скорость изменения момента импульса вращающегося тела равняется суммарному моменту внешних сил, действующих на него.
Уравнение (7.5) называется уравнением вращательного движения в форме моментов (уравнением моментов).
Закон
сохранения момента импульса:
Если
на систему вращающихся вокруг оси тел
не действуют моменты внешних сил (система
в этом смысле замкнута) или внешние
моменты взаимно уравновешиваются, то
суммарный момент импульса системы
относительно оси вращения с течением
времени не изменяется.
Таким образом,
закон утверждает, что внутренние моменты
сил системы не в состоянии изменить
полный суммарный момент импульса системы
тел, а в состоянии лишь перераспределить
его. Внутри системы возможна лишь
передача момента импульса от тела к
телу.
В аналитическом виде закон
сохранения момента импульса записывается
следующим образом: если Mвнеш = 0 , то
или
так: для начального и конечного момента
времени
https://lektsii.org/15-21986.html
Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
Работа и мощность при вращении твердого тела.
Найдем
выражение для работы при вращении тела.
Пусть сила
приложена
в точке
,
находящейся от оси
на
расстоянии
,
—
угол между направлением силы и
радиус-вектором
.
Так как тело абсолютно твердое, то работа
этой силы равна работе, затраченной на
поворот всего тела. При повороте тела
на бесконечно малый угол
точка
приложения
проходит
путь
и
работа равна произведению проекции
силы на направление смещения на величину
смещения:
.
Модуль момента силы равен:
,
тогда получим следующую формулу для вычисления работы:
.
Таким образом, работа при вращении твердого тела равна произведению момента действующей силы на угол поворота.
Кинетическая энергия вращающегося тела.
Моментом инерции мат.т. наз. физ. величина численно равная произведению массы мат.т. на квадрат расстояния этой точки до оси вращения.Wki =miV2i/2 Vi -Wri Wi=miw2r2i/2 =w2/2*miri2Ii=mir2i момент инерции твердого тела равен сумме всех мат.т I=Simir2i моментом инерции твердого тела наз. физ.величина равная сумме произведений мат.т. на квадраты расстояний от этих точек до оси. Wi-IiW2/2 Wk=IW2/2
Wk =SiWki момент инерции при вращательном движении явл. аналогом массы при поступательном движении. I=mR2/2
