
- •Волновая природа света. Уравнение электромагнитных волн. Скорость распространения электромагнитных волн. Длина волны, частота.
- •Свет и цвет. Видимый свет.
- •Законы геометрической оптики. Луч волны. Принцип Ферма.
- •Полное внутреннее отражение света, применение этого явления.
- •Линзы. Тонкая линза. Формула тонкой линзы. Построение изображений в тонких линзах.
- •Критерий применимости геометрической оптики. Аберрации оптических приборов.
- •Основные фотометрические величины – световой поток, освещенность, сила света. Единицы измерения.
- •Волновой цуг. Длина когерентности, время когерентности. Естественный свет и поляризованный свет. Степень поляризации света.
- •Поляроиды и их применение. Закон Малюса.
- •Явление двойного лучепреломления.
- •Эффект Керра. Вращение плоскости поляризации.
- •Явление интерференции света. Оптическая разность хода и разность фаз. Условия усиления и ослабления интенсивности света.
- •Интерференционный опыт Юнга. Ширина интерференционной полосы.
- •Интерференция в тонких пленках. Полосы равного наклона. Условия максимумов интерференции. Просветление оптики.
- •Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Применение интерференции света.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейность распространения света.
- •Дифракция Френеля на круглом отверстии, на сплошном диске. Пятно Пуассена. Радиус зоны Френеля.
- •Дифракция Фраунгофера на одной щели, на двух щелях. Ширина дифракционного максимума.
- •Дифракционная решетка. Условия дифракционных максимумов и минимумов.
- •Разрешающая способность дифракционной решетки. Критерий Рэлея.
- •Дифракция рентгеновских лучей. Рентгеноструктурный анализ. Формула Вульфа-Брэггов.
- •Взаимодействие света с веществом. Дисперсия, нормальная и анормальная. Закон Бугера.
- •Классическое объяснение явления дисперсии света.
- •Эффект Доплера для электромагнитных волн.
- •Эффект Черенкова, качественное объяснение.
- •Тепловое равновесное излучение. Излучательная и поглощательная способность. Функция Кирхгофа. Законы излучения абсолютно черного тела.
- •Закон Рэлея–Джонса. Ультрафиолетовая катастрофа. Гипотеза Планка.
- •Фотоэффект, уравнения Эйнштейна. Красная граница фотоэффекта.
- •Эффект Комптона, его объяснение из законов сохранения энергии и импульса. Энергия фотона и импульс фотона.
- •Волна вероятности. Опыт Джермера и Дэвиссона. Волна де Бройля. Корпускулярно-волновой дуализм.
- •Волновая функция. Уравнение Шредингера. Стационарное уравнение Шредингера.
- •Сотношение неопределенностей Гейзенберга.
- •Спектр излучения атома водорода. Формула Бальмера.
- •Планетарная модель атома, ее недостатки. Постулаты Бора. Вывод радиуса n-ой боровской электронной орбиты и полной энергии на n-ой орбите.
- •Электрон в атоме. Квантовые числа. Принцип запрета Паули.
- •Устройство лазера. Рубиновый лазер, гелий–неонный лазер. Свойства лазерного излучения.
- •Волоконно–оптическая связь: устройство и преимущества.
- •Строение атомного ядра. Массовое и зарядовое число. Изотопы и изобары. Модели ядра.
- •Энергия связи ядра. Дефект массы ядра.
- •Радиоактивность. Законы радиоактивного распада. Период полураспада.
- •Опыты Резерфорда. Сечение рассеяния альфа-частицы на ядре.
- •Нейтрон, открытие нейтрона. Сечение взаимодействия нейтрона с ядром.
- •Ядерные реакции. Искусственная радиоактивность.
- •Деление ядер. Альфа-распад. Альфа-активность.
- •Взаимодействие фотонного излучения с веществом.
- •Тормозное излучение. Коротковолновая граница сплошного рентгеновского излучения. Рентгеновская трубка.
- •Опыты Франка Герца
- •Энергия и импульс светового кванта.
- •Спин электрона. Принцип Паули. Правило отбора при излучении и поглощении света атомом.
- •Постулаты Эйнштейна. Замедление времени. Преобразования Лоренца.
-
Интерференционный опыт Юнга. Ширина интерференционной полосы.
Исторически первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2 (рис. 6.7.3). Проходя через каждую из щелей, световой пучок расширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.
S1 |
Рисунок 6.7.3.
С
S2 |
В опыте щели S1 и S2 освещались светом одного источника S. При симметричном расположении щелей вторичные волны, испускаемые источниками S1 и S2, находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r1 и r2. Следовательно, фазы колебаний, создаваемых волнами от источников S1 и S2 в точке P, вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S1 и S2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.
Ширина интерференционных полос — это расстояние на экране между двумя соседними светлыми или двумя темными полосами.
-
Интерференция в тонких пленках. Полосы равного наклона. Условия максимумов интерференции. Просветление оптики.
Пусть
монохроматическая волна падает на
тонкую пpозpачную пленку, от которой она
дважды отражается : часть от верхней
поверхности пленки, часть - от нижней
ее поверхности (а часть проходит через
пленку). Эти две отраженные волны (а и
b) (pис.
1.8) когеpентны и, накладываясь
дpуг на дpуга, интеpфеpиpуют. Одна волна
(та, котоpая заходит в пленку) отстает
от дpугой. Между волнами обpазуется
pазность хода. Если эта pазность хода
пеpеменная в пpостpанстве, то создаются
условия для наблюдения полос интеpфеpенции.
Интеpфеpенцию в тонких пленках можно
наблюдать двумя способами. Один способ
основан на том, что пленка имеет pазличную
толщину в pазных местах, дpугой - на том,
что свет может падать на пленку под
pазными углами. Пеpвый способ дает так
называемые полосы pавной толщины, втоpой
- полосы pавного наклона.
Полосы pавного наклона. Допустим, что пленка имеет постоянную толщину, но на нее падает pасходящийся пучок света (лучи падают на пленку под pазными углами). Разность хода интеpфеpиpующих волн будет зависеть от угла падения лучей. Полосы максимумов и минимумов интеpфеpенции следуют тепеpь за постоянными углами падения (потому и называются полосами pавного наклона). Чтобы их наблюдать необходимо собиpать лучи, отpаженные под одним и тем же углом, т. е. собиpать паpаллельные лучи. Поэтому зpительный пpибоp (напpимеp, тpубу) или глаз для наблюдения полос pавного наклона нужно сфокусиpовать на бесконечность.
Необходимо световой пучок, идущий от одного источника, каким-то обpазом pазделить на два или на большее число пучков (эти пучки будут когеpентны между собой), а затем заставить их наложиться дpуг на дpуга. Максимумы интенсивности волны будут наблюдаться в точках, где выполняется условие
минимумы - в точках, где
Здесь
чеpез
обозначена
pазность фаз складываемых волн.
Просветле́ние о́птики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Коэффициент преломления таких плёнок меньше коэффициента преломления стёкл линз.