
- •Волновая природа света. Уравнение электромагнитных волн. Скорость распространения электромагнитных волн. Длина волны, частота.
- •Свет и цвет. Видимый свет.
- •Законы геометрической оптики. Луч волны. Принцип Ферма.
- •Полное внутреннее отражение света, применение этого явления.
- •Линзы. Тонкая линза. Формула тонкой линзы. Построение изображений в тонких линзах.
- •Критерий применимости геометрической оптики. Аберрации оптических приборов.
- •Основные фотометрические величины – световой поток, освещенность, сила света. Единицы измерения.
- •Волновой цуг. Длина когерентности, время когерентности. Естественный свет и поляризованный свет. Степень поляризации света.
- •Поляроиды и их применение. Закон Малюса.
- •Явление двойного лучепреломления.
- •Эффект Керра. Вращение плоскости поляризации.
- •Явление интерференции света. Оптическая разность хода и разность фаз. Условия усиления и ослабления интенсивности света.
- •Интерференционный опыт Юнга. Ширина интерференционной полосы.
- •Интерференция в тонких пленках. Полосы равного наклона. Условия максимумов интерференции. Просветление оптики.
- •Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Применение интерференции света.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейность распространения света.
- •Дифракция Френеля на круглом отверстии, на сплошном диске. Пятно Пуассена. Радиус зоны Френеля.
- •Дифракция Фраунгофера на одной щели, на двух щелях. Ширина дифракционного максимума.
- •Дифракционная решетка. Условия дифракционных максимумов и минимумов.
- •Разрешающая способность дифракционной решетки. Критерий Рэлея.
- •Дифракция рентгеновских лучей. Рентгеноструктурный анализ. Формула Вульфа-Брэггов.
- •Взаимодействие света с веществом. Дисперсия, нормальная и анормальная. Закон Бугера.
- •Классическое объяснение явления дисперсии света.
- •Эффект Доплера для электромагнитных волн.
- •Эффект Черенкова, качественное объяснение.
- •Тепловое равновесное излучение. Излучательная и поглощательная способность. Функция Кирхгофа. Законы излучения абсолютно черного тела.
- •Закон Рэлея–Джонса. Ультрафиолетовая катастрофа. Гипотеза Планка.
- •Фотоэффект, уравнения Эйнштейна. Красная граница фотоэффекта.
- •Эффект Комптона, его объяснение из законов сохранения энергии и импульса. Энергия фотона и импульс фотона.
- •Волна вероятности. Опыт Джермера и Дэвиссона. Волна де Бройля. Корпускулярно-волновой дуализм.
- •Волновая функция. Уравнение Шредингера. Стационарное уравнение Шредингера.
- •Сотношение неопределенностей Гейзенберга.
- •Спектр излучения атома водорода. Формула Бальмера.
- •Планетарная модель атома, ее недостатки. Постулаты Бора. Вывод радиуса n-ой боровской электронной орбиты и полной энергии на n-ой орбите.
- •Электрон в атоме. Квантовые числа. Принцип запрета Паули.
- •Устройство лазера. Рубиновый лазер, гелий–неонный лазер. Свойства лазерного излучения.
- •Волоконно–оптическая связь: устройство и преимущества.
- •Строение атомного ядра. Массовое и зарядовое число. Изотопы и изобары. Модели ядра.
- •Энергия связи ядра. Дефект массы ядра.
- •Радиоактивность. Законы радиоактивного распада. Период полураспада.
- •Опыты Резерфорда. Сечение рассеяния альфа-частицы на ядре.
- •Нейтрон, открытие нейтрона. Сечение взаимодействия нейтрона с ядром.
- •Ядерные реакции. Искусственная радиоактивность.
- •Деление ядер. Альфа-распад. Альфа-активность.
- •Взаимодействие фотонного излучения с веществом.
- •Тормозное излучение. Коротковолновая граница сплошного рентгеновского излучения. Рентгеновская трубка.
- •Опыты Франка Герца
- •Энергия и импульс светового кванта.
- •Спин электрона. Принцип Паули. Правило отбора при излучении и поглощении света атомом.
- •Постулаты Эйнштейна. Замедление времени. Преобразования Лоренца.
-
Фотоэффект, уравнения Эйнштейна. Красная граница фотоэффекта.
Фотоэффект - испускание электронов телами под действием света.
Различают фотоэффект внешний, внутренний и вентильный.
Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения.
Внутренний фотоэффект — это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу.
Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффекта, — возникновение э.д.с. (фото-э.д.с. Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля).
Три закона внешнего фотоэффекта:
I. Закон Столетова: при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Ее катода).
II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов(физ. электрон, испущенный атомом вещества под воздействием световой энергии) не зависит от интенсивности падающего света, а определяется только его частотой .
III. Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота 0 света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.
Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла (см. § 104) и на сообщение вылетевшему фотоэлектрону кинетической энергии mv2max/2. По закону сохранения энергии,
(203.1)
где
Aout — т. н. работа
выхода (минимальная энергия,
необходимая для удаления электрона из
вещества),
—
кинетическая
энергия вылетающего электрона,
ν — частота падающего фотона с энергией
hν, h — постоянная
Планка. Из этой формулы следует
существование красной
границы фотоэффекта, то есть
существование наименьшей частоты, ниже
которой энергии фотона уже не достаточно
для того, чтобы «выбить» электрон из
металла. Суть формулы заключается в
том, что энергия фотона расходуется на
ионизацию атома вещества, на работу,
которую необходимо совершить для того,
чтобы «вырвать» электрон, и остаток
переходит в кинетическую энергию
электрона.Уравнение (203.1) называется
уравнением Эйнштейна для внешнего
фотоэффекта.
Уравнение
Эйнштейна позволяет объяснить II
и III законы фотоэффекта
- максимальная кинетическая энергия
фотоэлектрона линейно возрастает с
увеличением частоты падающего излучения
и не зависит от его интенсивности (числа
фотонов (II закон фотоэффекта). с уменьшением
частоты света кинетическая энергия
фотоэлектронов уменьшается и при
некоторой достаточно малой частоте
=0
кинетическая энергия фотоэлектронов
станет равной нулю и фотоэффект
прекратится (III закон
фотоэффекта). Согласно изложенному, из
(203.1) получим, что(203.2)и
есть красная граница фотоэффекта для
данного металла. Она зависит лишь от
работы выхода электрона, т. е. от химической
природы вещества и состояния его
поверхности.