- •Оглавление
- •Модуль 1. История от Гальтона до Генома
- •Глава 1. Оглядываясь назад
- •Глава 2. Евгеника
- •Глава 3. Важные даты
- •Глава 1. Оглядываясь назад
- •Глава 2. Евгеника
- •2.1. Идея совершенствования человека
- •2.2. Позитивная и негативная евгеника
- •2.3. Русское евгеническое движение
- •2.4. Историческое значение евгеники
- •2.5 Список основной и дополнительной литературы
- •Глава 3. Важные даты
- •Модуль 2 Молекулярные основы наследственности
- •Глава 4. Структура днк и матричные процессы в клетке
- •4.1. Строение нуклеиновых кислот. Репликация
- •4.2. Транскрипция
- •4.3. Трансляция белков
- •4.1. Строение нуклеиновых кислот. Репликация
- •4.2. Транскрипция
- •4.3. Трансляция белков
- •Глава 5. Геном человека, структура генов
- •5.1. Общая характеристика генов человека. Мультигенные семейства
- •5.2. Повторяющиеся элементы генома
- •5.3. Мобильность генома Глава 6. Хромосомы
- •6.1. Упаковка генетического материала
- •6.2. Кариотип человека
- •6.3. История развития цитогенетики человека
- •6.1. Упаковка генетического материала
- •6.2. Кариотип человека
- •6.3. История развития цитогенетики человека
- •Модуль 3. Развитие человека и репродуктивные технологии
- •Глава 7. Гаметогенез и беременность
- •7.1. Клеточный цикл и его периоды
- •7.1.1. Митоз
- •7.1.2. Мейоз
- •7.2. Гаметогенез
- •7.2.1. Сперматогенез
- •7.2.2. Оогенез
- •7.3. Эмбриогенез
- •7.3.1. Оплодотворение
- •7.3.2. Дробление и образование бластулы
- •7.3.4. Гистогенез, органогенез, системогенез
- •7.3.5. Внезародышевые органы. Плацента.
- •7.3.6. Критические периоды эмбриогенеза и тератогены.
- •7.4. Пренатальная диагностика
- •7.4.1. Непрямые методы пренатальной диагностики
- •7.4.2. Прямые методы пренатальной диагностики
- •7.5. Экстракорпоральное оплодотворение
- •7.5.1. История эко
- •7.5.2. Основные этапы эко
- •7.5.3. Беременность и роды
- •Глава 8. Постнатальное развитие
- •8.1. Пубертатный период
- •8.2. Акселерация и ретардация человека
- •8.3. Старение
- •8.3.1. Теломеры и их роль в старении
- •8.3.2. Апоптоз и продолжительность жизни
- •8.3.3. Наследование долголетия
- •Модуль 4. Закономерности наследования признаков
- •Глава 9. Моно- и полигибридное наследование
- •Глава 10. Сцепленное наследование
- •Глава 11. Митохондриальные гены и материнское наследование
- •Глава 9. Моно- и полигибридное наследование
- •9.1. Законы Менделя
- •9. 2. Взаимодействие неаллельных генов
- •9.2.1. Комбинативное взаимодействие
- •9.2.2. Комплементарный тип взаимодействия
- •9.2.3. Эпистаз
- •9.2.4. Полимерия
- •9.2.5. Плейотропия
- •Глава 10. Сцепленное наследование
- •10.1. Хромосомная теория наследственности
- •10.2. Кроссинговер
- •10.3. Генетические карты
- •10.1. Хромосомная теория наследственности
- •10.2. Кроссинговер
- •10.3. Генетические карты
- •Глава 11. Митохондриальные гены и материнское наследование
- •11.1. Митохондриальная днк
- •11.2. Митохондриальные болезни
- •Модуль 5. Генетика пола Глава 12. Генетика формирования пола
- •12.1. Половые хромосомы
- •12.3. Голондрическое наследование
- •12.4. Наследование признаков, контролируемых полом
- •12.5. Геномный импринтинг
- •Глава 13. Генетика формирования пола
- •13.1. Уровни половой дифференцировки
- •13.2. Генетические синдромы связанные с нарушением формирования пола
- •13.2.1. Синдромы связанные с нарушением половых хромосом
- •13.2.2 Синдром Шерешевского-Тернера
- •13.2.3. Синдромы с гонадным нарушением пола
- •13.2.4 Синдромы с гормональным нарушением пола
- •Модуль 6. Мутации
- •Глава 14. Классификация мутаций
- •Глава 15. Репарация
- •Глава 14. Классификация мутаций
- •14.1. Наследственность и изменчивость
- •14.1.1. Типы изменчивости
- •14.1.2. Ненаследственная изменчивость
- •14.1.3. Наследственная изменчивость
- •14.2. Мутации – общие сведения
- •14.3. Мутагены
- •14.3.1. Генные мутации
- •14.3.2. Хромосомные мутации
- •14.3.3. Геномные
- •14.4. Типы мутаций
- •14.5. Номенклатура мутаций
- •14.6. Методы обнаружения мутаций
- •14.7. Наследственная патология как результат мутаций у человека
- •Глава 15. Репарация
- •15.1. Механизмы защиты генома от мутаций
- •15.2. Генетическая репарация
- •15.2.1. Фотореактивация
- •15.2.2. Темновая репарация
- •15.2.3. Репарация и мутации
- •15.2.4. Репарация на разных этапах индивидуального развития организмов
- •15.2.5. Нарушения репарации и болезни человека
- •Модуль 7. Мультифакторное наследование
- •Глава 16. Гены и окружающая среда
- •Глава 17. Черты некоторых мультифакторных болезней
- •Глава 16. Гены и окружающая среда
- •16.1. Онтогенетическая изменчивость
- •16.2 Модификационная изменчивость
- •16.3. Фенокопии и морфозы
- •16.4 Полигено-аддитивное наследование
- •16. 5 Сигнальная (социальная, культурная наследственность)
- •Глава 17. Черты некоторых мультифакторных болезней
- •17.1 Сахарный диабет и ожирение
- •17. 2. Врожденные пороки развития
- •17. 3. Близнецовый метод
- •Модуль 8. Генетика иммунитета
- •Глава 18. Важность клеточной поверхности
- •18.1. Группы крови системы аво
- •18.2. Резус-фактор
- •18.3. Комплекс гистосовместимости hla
- •18.1. Группы крови системы аво
- •18.2. Резус-фактор
- •18.3. Комплекс гистосовместимости hla
- •Глава 19. Нарушения иммунитета
- •19.1. Синдром приобретенного иммунодефицита - спид
- •19.2. Аутоиммунные заболевания
- •Модуль 9. Генетика популяций
- •Глава 20. Популяционно-генетический метод
- •Глава 20. Популяционно-генетический метод
- •20.1 Закон Харди- Вайнберга
- •20.2 Инбридинг
- •20.3 Генетический дрейф
- •20.4 Миграции
- •20.5 Мутации
- •20.6 Естественный отбор
- •Модуль 10. Генетика рака
- •Глава 21. Рак как генетическая болезнь
- •Глава 21. Рак как генетическая болезнь
- •21.1. Семейные случаи рака
- •21.2. Потеря контроля клеточного цикла
- •21.3. Гены, контролирующие развитие опухоли
- •21.4. Супрессоры опухоли
- •21.5. Роль стволовых клеток в онкогенезе
- •21.6. Генодиагностика и генотерапия рака
- •Модуль 11. Генная терапия
- •Глава 22 Генная терапия – успехи и неудачи
- •Глава 22 Генная терапия – успехи и неудачи
- •22.1. Дефицит аденозин дезаминазы – ранний успех
- •22.2. Орнитин транскарбамилаза – неудача
- •22.3 Механизм генной терапии
- •22.3.1 Генотерапевтические агенты.
- •22.4. Генная терапия соматических клеток и половых клеток
- •22.5. Будущее генной терапии. Медленный старт, но большие надежды.
- •Краткий словарь генетических терминов
9.2.3. Эпистаз
- ген подавляет действие неаллельного гена. Различают доминантный и рецессивный эпистаз. При доминантном эпистазе доминантная аллель одного гена подавляет действие доминантной или рецессивной аллели другого гена (А подавляет В или А подавляет вв). В случае рецессивного эпистаза рецессивная аллель в гомозиготе препятствует проявлению доминантной или рецессивной аллелей другого гена (аа подавляет В или аа подавляет вв). При рецессивном эпистазе в дигибридном скрещивании происходит расщепление в соотношении (9 : 3 : 4), при доминантном эпистазе - 12:3:1 или 13:3. Ген, подавляющий действие другого гена, называется эпистатическим геном, ингибитором или супрессором. Подавляемый ген носит название гипостатического.
У человека группы крови АВО контролируются тремя аллелями одного гена. В популяции встречается редкий мутантный аллель h независимого гена, который в гомозиготном состоянии подавляет действие аллелей А и В, что приводит к фенотипическому проявлению первой группы крови. В Индии была описана семья, в которой родители имели вторую и первую группу крови. Оба родителя были гомозиготными по группам крови:
Таким образом, "Бомбейский" феномен определяется тем, что в генотипе детей есть ген подавляющий действие генов А и В.
9.2.4. Полимерия
– явление, когда несколько неаллельных доминантных генов контролируют развитие одного и того же гена. Такие гены называются полимерными и обозначаются одной и той же буквой, но с другим индексом (например: А, А2, А3, А4. и т.д.). Различают кумулятивную и некумулятивную полимерию. При кумулятивной полимерии действие полимерных генов суммируется, чем их больше, тем ярче выражен признак. Впервые кумулятивная полимерия была описана в 1908г Нильсоном -Эле при анализе наследования окраски эндосперма зерна пшеницы. По типу кумулятивной полимерии наследуются многие количественные признаки (цвет кожи у человека, яровость, озимость, жирность молока, длина колоса у злаков и др.).
При некумулятивной полимерии выражение фенотипа не зависит от количества полимерных генов, присутствующих в генотипе. Расщепление во втором поколении будет зависеть от количества полимерных генов, присутствующих в генотипе. При наличии двух полимерных генов расщепление в о втором поколении соответствует 15 :1, при наличии трёх полимерных генов - 63 :1 и т.д.).
Цвет кожи человека определяется взаимодействием нескольких пар генов по типу кумулятивной полимерии, т.е. цвет кожи тем темнее, чем больше доминантных генов в генотипе. Возможные генотипы и фенотипы цвета кожи:
черная кожа – A 1 A 1 A 2 A 2
темная – A 1 A 1 A 2 a 2
смуглая (мулат) – A 1 a 1 A 2 a 2
светлая – A 1 a 1 a 2 a 2
белая – a 1 a 1 a 2 a 2
Если два мулата ( A 1 a 1 A 2 a 2) имеют детей, то можно ли ожидать среди них детей с черной, смуглой и белой кожей? Какую часть составят дети каждого типа?
В этой семье возможны дети всех цветов кожи: 1 : 4 : 6 : 4 : 1, т.е.
черные – 1/16, темные – 4/16, смуглые – 6/16, светлые – 4/16 и белые – 1/16.
9.2.5. Плейотропия
- множественное действие гена (один ген контролирует развитие нескольких признаков). Первый пример плейотропного действия гена мы находим в работе Г.Менделя, а именно: окраска цветка и окраска семенной кожуры зависели от одного наследственного задатка.
У человека известен доминантный ген, определяющий признак "паучьи пальцы" (синдром Марфана). Одновременно он определяет аномалии хрусталика глаза и порок сердца.
Модифицирующее действие гена - ген усиливает или ослабляет действие неаллельного гена. Существуют гены "основного действия", т.е. такие, которые определяют развитие признака или свойства, например выработку пигмента, форму плода, чувствительность или устойчивость к заболеваниям и т.д. Наряду с такими генами, по-видимому, существуют гены, которые сами по себе не определяют какую-либо качественную реакцию или признак, они лишь усиливают или ослабляют проявление действия "основного" гена, т.е. модифицируют его, - такие гены получили название модификаторов. Любые взаимодействующие гены в одно и то же время являются генами "основного" действия по одному признаку, а по другому (или другим) являются генами-модификаторами.
Проявление патологического гена определяется такими его свойствами, как пенетрантность и экспрессивность. Пенетрантность - это вероятность фенотипического проявления гена, которая выражается в процентах (отношение больных особей к числу носителей соответствующего гена). Экспрессивность - степень клинического проявления гена, которая может быть слабой или сильной. Пенетрантность и экспрессивность генов зависят от эндогенных и экзогенных факторов. Например, если для проявления гемофилии решающее значение имеет нарушение в геноме, то возникновение сахарного диабета зависит от взаимодействия генетических факторов и внешней среды. В последнем случае говорят о наследственном предрасположении. Способность генотипа по-разному проявляться в различных условиях среды называется нормой реакции. Норма реакции наследуется, а изменения в пределах нормы реакции не наследуются.
