Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety-otvety_Avtosokhranenny.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.42 Mб
Скачать
  1. Мембранные и ионные механизмы происхождения биопотенциалов в покое. Особенности местного и распространяющегося процессов возбуждения.

Биопотенциал покоя – это разность потенциалов между наружной и внутренней поверхностью мембраны клетки в покое. Наружная поверхность мембраны клетки имеет положительный заряд, а внутренняя – отрицательный. Современная, экспериментально доказанная, мембранно-ионная теория возникновения биопотенциалов (Ходжкин, Хаксли, Катц).Основные положения:1.Электрические процессы возникают на ПМ клетки, которая состоит из бислоя липидов и белков, выполняющих различные функции, в том числе образует каналы и насосы. Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом «утечки».

Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей: водной поры – выстлана внутри гидрофильными группами; селективного фильтра – на наружной поверхности, который пропускает ионы в зависимости от их размера и формы; ворот – на внутренней поверхности мембраны, управляют проницаемостью канала.

Каналы для натрия имеют два типа ворот: быстрые активационные и медленные инактивационные. В покое открыты медленные инактивационные и закрыты быстрые активационные. При возбуждении происходит открытие быстрых активационных и медленное закрытие медленных инактивационных, т.е. на короткий промежуток времени оба типа ворот открыты.

Калиевые каналы имеют только медленные ворота. Насосы выполняют функцию транспорта через мембрану ионов против градиента концентрации, для их работы используется энергия АТФ.

По обе стороны мембраны существует концентрационный градиент.

Внутри клетки     в 40 раз > К+; Внеклетки:     в 20-30 раз >Na+в 50 раз > Cl-.

Мембрана пропускает молекулы жирорастворимых веществ, а анионы органических кислот не проходят. Мембрана проницаема для воды, для ионов проницаемость мембраны различна: для калия в состоянии покоя проницаемость почти в 25 раз больше, чем для натрия.

При возбуждении увеличивается проницаемость и для калия (постепенно), и для натрия (быстро, но на очень короткий промежуток времени).Особенности местного и распространяющегося возбуждения: Возбуждение может быть 2-х видов: местное (локальный ответ) и распространяющееся (импульсное).

Местное возбуждение- наиболее древний вид (низшие формы организмов и низковозбудимые ткани - например, соединительная ткань). Местное возбуждение возникает и в высокоорганизованных тканях под действием подпорогового раздражителя или как компонент потенциала действия. При местном возбуждении нет видимой ответной реакции.

Особенности местного возбуждения:

  • нет латентного (скрытого) периода - возникает сразу же при действии раздражителя;

  • нет порога раздражения;

  • местное возбуждение градуально - изменение заряда клеточной мембраны пропорционально силе подпорогового раздражителя;

  • нет рефрактерного периода, наоборот характерно небольшое повышение возбудимости;

  • распространяется с декрементом (затуханием).

Импульсное (распространяющееся) возбуждение - присуще высокоорганизменным тканям, возникает под действием порогового и сверхпорогового раздражителей.

Особенности импульсного возбуждения:

  • имеет латентный период - между моментом нанесения раздражения и видимой ответной реакцией проходит некоторое время;

  • имеет порог раздражения;

  • не градуально - изменение заряда клеточной мембраны не зависит от силы раздражителя;

  • наличие рефрактерного периода;

  • импульсное возбуждение не затухает.

Вывод: в организме животного и человека наблюдается местное и импульсное возбуждение. Возникновение того или иного вида возбуждения зависит от степени развития ткани и силы раздражителя.

  1. Электрофизиологическая характеристика процесса возбуждения (А. Ходжкин, А.Хаксли, Б.Катц) Потенциал действия и его фазы. Ионные механизмы возбуждения. Изменения проницаемрости клеточной мембраны при возбуждении.

Возбуждение – это активный процесс, представляющий собой ответную реакцию ткани на раздражение и характеризующийся повышением функций ткани.

В развитии возбуждения выделяют 4 этапа:

  1. предшествующее возбуждению состояние покоя (статическая поляризация

  2. деполяризацию;

  3. реполяризацию

  4. гиперполяризацию.

Статическая поляризация – наличие постоянной разности потенциалов между наружной и внутренней поверхностями клеточной мембраны. В состоянии покоя наружная поверхность клетки всегда электроположительна по отношению к внутренней, т.е. поляризована. Эта разность потенциалов, равная ~ 60 мВ, называется потенциалом покоя, или мембранным потенциалом (МП).

В образовании потенциала принимают участие 4 вида ионов:

  • катионы натрия (положительный заряд),

  • катионы калия (положительный заряд),

  • анионы хлора (отрицательный заряд),

  • анионы органических соединений (отрицательный заряд).

Во внеклеточной жидкости высока концентрация ионов натрия и хлора, во внутриклеточной жидкости – ионов калия и органических соединений. В состоянии относительного физиологического покоя клеточная мембрана хорошо проницаема для катионов калия, чуть хуже для анионов хлора, практически непроницаема для катионов натрия и совершенно непроницаема для анионов органических соединений. В покое ионы калия без затрат энергии выходят в область меньшей концентрации (на наружную поверхность клеточной мембраны), неся с собой положительный заряд.

Ионы хлора проникают внутрь клетки, неся отрицательный заряд. Ионы натрия продолжают оставаться на наружной поверхности мембраны, еще больше усиливая положительный заряд.

Деполяризация – сдвиг МП в сторону его уменьшения. Под действием раздражения открываются «быстрые» натриевые каналы, вследствие чего ионы Na лавинообразно поступают в клетку. Переход положительно заряженных ионов в клетку вызывает уменьшение положительного заряда на ее наружной поверхности и увеличение его в цитоплазме. В результате этого сокращается трансмембранная разность потенциалов, значение МП падает до 0, а затем по мере дальнейшего поступления Na в клетку происходят перезарядка мембраны и инверсия ее заряда (поверхность становится электроотрицательной по отношению к цитоплазме) – возникает потенциал действия (ПД). Электрографическим проявлением деполяризации является спайк, или пиковый потенциал. Во время деполяризации, когда переносимый ионами Na положительный заряд достигает некоторого порогового значения, в сенсоре напряжения ионных каналов возникает ток смещения, который «захлопывает» ворота и «запирает» (инактивирует) канал, прекращая тем самым дальнейшее поступление Na в цитоплазму. Канал «закрыт» (инактивирован) вплоть до восстановления исходного уровня МП.

Реполяризация – восстановление исходного уровня МП. При этом ионы натрия перестают проникать в клетку, проницаемость мембраны для калия увеличивается, и он достаточно быстро выходит из нее. В результате заряд клеточной мембраны приближается к исходному. Электрографическим проявлением реполяризации является отрицательный следовой потенциал.

Гиперполяризация – увеличение уровня МП. Вслед за восстановлением исходного значения МП (реполяризация) происходит его кратковременное увеличение по сравнению с уровнем покоя, обусловленное повышением проницаемости калиевых каналов и каналов для Cl . В связи с этим поверхность мембраны приобретает избыточный по сравнению с нормой положительный заряд, а уровень МП становится несколько выше исходного. Электрографическим проявлением гиперполяризации является положительный следовой потенциал. На этом заканчивается одиночный цикл возбуждения.

Потенциал действия - это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. При регистрации потенциала действия с помощью микроэлектродной техники наблюдается типичный пикообразный потенциал. В нем выделяют следующие фазы или компоненты:

  • Локальный ответ - начальный этап деполяризации.

  • Фазу деполяризации - быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут).

  • Фазу реполяризации - восстановление исходного уровня мембранного потенциала; в ней выделяют фазу быстрой реполяризации и фазу медленной реполяризации, в свою очередь, фаза медленной реполяризации представлена следовыми процессами (потенциалами):следовая негативность (следовая деполяризация) и следовая позитивность (следовая гиперполяризация). Амплитудно-временные характеристики потенциала действия нерва, скелетной мышцы таковы: амплитуда потенциала действия 140-150 мВ; длительность пика потенциала действия (фаза деполяризации + фаза реполяризации) составляет 1-2 мс, длительность следовых потенциалов - 10-50 мс. Форма потенциала действия (при внутриклеточном отведении) зависит от вида возбудимой ткани: у аксона нейрона, скелетной мышцы - пикообразные потенциалы, у гладких мышц в одних случаях пикообразные, в других - платообразные (например, потенциал действия гладких мышц матки беременной женщины - платообразный, а длительность его составляет почти 1 минуту). У сердечной мышцы потенциал действия имеет платообразную форму.

Природа потенциала действия:

При исследовании ПД аксонов и сомы нервной клетки, ПД скелетной мышцы было установлено, что фаза деполяризации обусловлена значительным повышением проницаемости для ионов натрия, которые входят в клетку в начале процесса возбуждения и таким образом уменьшают существующую разность потенциала (деполяризация). Чем выше степень деполяризации, тем выше становится проницаемость натриевых каналов, тем больше входит ионов натрия в клетку и тем выше степень деполяризации. В этот период происходит не только снижение разности потенциалов до нуля, но и изменение поляризованности мембраны - на высоте пика ПД внутренняя поверхность мембраны заряжена положительно по отношению к наружной (явление реверсии, или овершута).

Однако бесконечно этот процесс идти не может: в результате закрытия инактивационных ворот натриевые каналы закрываются, и приток натрия в клетку прекращается. Затем наступает фаза реполяризации. Она связана с увеличением выхода из клетки ионов калия. Это происходит за счет того, что в результате деполяризации большая часть калиевых каналов, которые в условиях покоя были закрыты, открываются и «+» заряды уходят за пределы клетки. Вначале этот процесс идет очень быстро, потом - медленно, поэтому фаза реполяризации вначале протекает быстро (нисходящая часть пика ПД), а потом медленно (следовая негативность). Этот же процесс лежит в основе фазы следовой гиперполяризации. На фоне следовых потенциалов происходит активация K-Na-ого насоса. Если он работает в электронейтральном режиме (2 иона Na выносятся из клетки в обмен на 2 вносимых в клетку иона K), то на форме ПД этот процесс не отражается. Если же насос работает в электрогенном режиме, когда 3 иона Na выносятся из клетки в обмен на 2 вносимых в клетку иона K, то в результате на каждый такт работы насоса в клетку вносится на 1 катион меньше, чем выносится, поэтому в клетке постепенно возрастает избыток анионов, т. с. в таком режиме насос способствует появлению дополнительной разности потенциалов. Это явление может лежать в основе фазы следовой гиперполяризации.

В сердечной мышце природа ПД иная: процесс деполяризации обусловлен ионами натрия и кальция - эти ионы входят внутрь клетки в начале фазы деполяризации.

В гладких мышцах сосудов, желудка, кишечника, матки и других образований генерация ПД связана с тем, что в момент возбуждения в клетку входят главным образом не ионы натрия, а ионы кальция.

Ионный механизм возбуждения:

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается за счет активации натриевых каналов. При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются извне-во внутриклеточное пространство. Вхождению ионов Na+ в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na+ становится в 20 раз больше проницаемости для ионов К+.

Поскольку поток Na+ в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации). Мембрана характеризуется повышенной проницаемостью для ионов Na+ лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na+ вновь понижается, а для К+ возрастает. В результате поток Na+ внутрь клетки резко ослабляется, а ток К+ из клетки усиливается. В течение потенциала действия в клетку поступает значительное количество Na+, а ионы К+ покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na+, К+ - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na+ и увеличении внешней концентрации ионов К+.

Благодаря работе ионного насоса и изменению проницаемости мембраны для Na+ и К+ первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

  1. Возбуждение и возбудимость. Изменение возбудимости при возбуждении. Изменение возбудимости ткани при медленном нарастании деполяризующего тока, свойство аккомадации. Характеристика рефрактерности и экзальтации.

Возбуждение – реакция живой клетки на раздражение, выработанная в процессе эволюции: активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

При возбуждении живая система переходит из состояния относительного физиологического покоя к деятельности (например, сокращение мышечного волокна, выделение секрета железистыми клетками и др.).

В организме существует 3 типа возбудимых клеток:

  • нервные клетки (возбуждение проявляется генерацией электрического импульса);

  • мышечные клетки (возбуждение проявляется сокращением);

  • секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимая клетка может находиться в двух дискретных состояниях: состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы); и состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы). Сущность процесса возбуждения: все клетки организма имеют электрический заряд, обеспечивае­мый неодинаковой концентрацией анионов и катионов вне и внутри клетки. При действии раздражителя на клетку возбудимой ткани изменяется проницаемость ее мембраны, вследствие чего ионы быстро перемещаются согласно электрохимическому градиенту (совокупность концентрационного и электрического градиентов), - это и есть процесс возбуждения. Его основой является потенциал покоя.

Возбудимость– способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Изменение возбудимости при возбуждении: воздействуя раздражителями разной силы в различные фазы потенциала действия, можно проследить как изменяется возбудимость в ходе возбуждения. Период локального ответа характеризуется повышенной возбудимостью (мембранный потенциал приближается к критическому уровню деполяризации); во время фазы деполяризации мембрана утрачивает возбудимость, которая постепенно восстанавливается в ходе реполяризации.

Выделяют период абсолютной рефрактерности, который в нервных клетках продолжается около 1 мс, и характеризуется их полной невозбудимостью. Период абсолютной рефрактерности возникает в результате практически полной инактивации натриевых каналов и повышения калиевой проводимости мембраны. По мере реполяризации мембраны происходит реактивация натриевых каналов и снижается калиевая проводимость. Это период относительной рефрактерности: потенциал действия может возникнуть только при действии более сильных (надпороговых) раздражителей.

В период отрицательного следового потенциала фаза относительной рефрактерности сменяется фазой повышенной (супернормальной) возбудимости. В этот период порог раздражения снижен по сравнению с исходным значением, поскольку мембранный потенциал ближе к критической величине, чем в состоянии покоя.

Фаза следовой гиперполяризации, обусловленная остаточным выходом калия из клетки, напротив, характеризуется снижением возбудимости, поскольку мембранный потенциал больше, чем в состоянии покоя, и требуется приложить более сильный раздражитель для его "смещения" до уровня критической деполяризации.

Таким образом, в динамике возбудительного процесса изменяется способность клетки реагировать на раздражители, т.е. возбудимость. Это имеет большое значение, поскольку в момент наибольшего возбуждения (пика потенциала действия), клетка становится абсолютно невозбудимой, что защищает ее от гибели и повреждений.

При кратковременном пропускании подпорогового постоянного электрического тока изменяется возбудимость ткани под стимулирующими электродами. Микроэлектродные исследования показали, что под катодом происходит деполяризация клеточной мем­браны, под анодом—гиперполяризация. В первом случае будет уменьшаться разность между критическим потенциалом и мем­бранным потенциалом, т. е. возбудимость ткани под катодом увели­чивается. Под анодом происходят противоположные явления ,т. е. возбудимость уменьшается.

Если мембрана отвечает пас­сивным сдвигом потенциала, то говорят об электротонических сдви­гах, или электротоне. При кратковременных электротонических сдви­гах значение критического потенциала не изменяется. При сравнительно большой продолжительности действия подпорогового тока изменяется не только мембранный потенциал, но и значение критического потенциала. При этом под катодом проис­ходит смещение уровня критического потенциала вверх,что свидетельствует об инактивации  натриевых каналов.  Таким образом, возбудимость под катодом уменьшается при длительном воздействии подпорогового тока. Это явление уменьшения возбуди­мости при длительном действии подпорогового раздражителя назы­вается аккомодацией. При этом в исследуемых клетках возникают аномально низкоамплитудные потенциалы действия.

Рефрактерность (от франц. геfractaire — невосприимчивый), кратковременное снижение возбудимости нервной и мышечной тканей непосредственно вслед за потенциалом действия.

Экзальтация (от позднелат. exaltatio — подъём, одушевление)- кратковременный период повышенной возбудимости нервной и мышечной тканей, сменяющийся фазой несколько сниженной возбудимости — субнормальным периодом.