- •Глава 1 8
- •Глава 6 66
- •Глава 7 70
- •Глава 8 84
- •Глава 9 101
- •Глава 10 106
- •Глава 11 131
- •Глава 12 153
- •Глава 13 173
- •Глава 14 200
- •Глава 15 219
- •Глава 16 244
- •Глава 17 247
- •17.1 Введение 247
- •Глава 18 266
- •Глава 19 268
- •Глава 20 280
- •Глава 1
- •1. Классификация и методы получения нанокластеров и наноструктур
- •1.1 Молекулярные кластеры
- •1.2 Газовые безлигандные кластеры
- •1.2.1 Источники получения кластеров
- •1.2.2 Масс-спектрометры и детектирование кластеров
- •1.3 Коллоидные кластеры
- •1.4 Твердотельные нанокластеры и наноструктуры
- •1.5 Матричные нанокластеры и супрамолекулярные наноструктуры
- •1.6 Кластерные кристаллы и фуллериты
- •1.7 Компактированные наносистемы и нанокомпозиты
- •1.8 Тонкие наноструктурированные пленки
- •1.9 Углеродные нанотрубки
- •Глава 2
- •2Общие положения
- •2.1Объекты и процессы нанотехнологий
- •2.2 Основная концепция нанотехнологии
- •2.2.1 Физико-химические основы нанотехнологии
- •Глава 3
- •3 Наночастицы, нанонаука, нанотехнология, нанофизика, нанохимия, наномеханика, нанобиология, наномедицина и т.Д., закон Мура
- •3.1 Механические свойства нанокристаллических материалов
- •Глава 4
- •4 Методы контроля аттестации наночастиц, наноизделий и наноструктурированных материалов
- •4.1Методы получения наноструктур
- •4.2 Методы получения наносистем
- •4.3 Особенности ультрадисперсных систем
- •Глава 5 Поверхностные эффекты в нанотехнологиях
- •5.1. Атомные и молекулярные орбитали
- •5.2 Поверхность монокристаллов, нанокластеров и пористых сорбентов
- •5.3 Примесные атомы на поверхности
- •5.4 Поверхность металлов и оксидов металлов (электронные свойства)
- •5.5 Поверхность металлов и оксидов металла (магнитные свойства)
- •5.6 Поверхностные центры кислотного и основного типа
- •5.7 Адсорбция
- •5.8 Примеры адсорбции
- •5.9 Адсорбция молекул воды и атомная динамика атомов железа в пористых ионообменниках.
- •5.10 Адсорбция воды и динамика кластеров воды и полимерной сетки.
- •5.11 Катализ. Примеры каталитических превращений с участием поверхности твердого тела и нанокластеров
- •Глава 6
- •6 Самосборка. Магические цифры. Замена построения синтеза объекта «сверху-вниз» на синтез «снизу-вверх»
- •Глава 7
- •7 Физика наночастиц и нанотехнологии, структура наночастиц. Кластеры
- •7.1 Молекулярные кластеры
- •7.2 Газовые безлигандные кластеры
- •7.2.1 Источники получения кластеров
- •7.2.2 Масс-спектрометры и детектирование кластеров
- •7.3 Коллоидные кластеры
- •7.4 Твердотельные нанокластеры и наноструктуры
- •7.5 Матричные нанокластеры и супрамолекулярные наноструктуры
- •7.6 Кластерные кристаллы и фуллериты
- •7.7 Компактированные наносистемы и нанокомпозиты
- •7.8 Тонкие наноструктурированные пленки
- •Глава 8
- •8 Наноструктурированные материалы. Кристаллизация пленок из растворов-расплавов
- •8.1 Разупорядоченные твердотельные структуры
- •8.1.1 Методы синтеза
- •8.1.2 Механизмы разрушения традиционных поликристаллических материалов
- •8.1.3 Механические свойства
- •8.1.4 Наноструктурированные многослойные материалы
- •8.1.5 Электрические свойства
- •8.1.6 Другие свойства
- •8.1.7 Металлические нанокластеры в оптических стеклах
- •8.1.8 Пористый кремний
- •8.2 Наноструктурированные кристаллы
- •8.2.1 Природные нанокристаллы
- •8.2.2 Теоретическое предсказание существования кристаллических решеток из нанокластеров
- •8.2.3 Упорядоченные структуры наночастиц в цеолитах
- •8.2.4 Кристаллы из металлических наночастиц
- •8.2.5 Упорядоченные решетки наночастиц в коллоидных суспензиях
- •8.2.6 Наноструктурированные кристаллы для фотоники
- •Глава 9
- •9 Механические свойства наноструктурированных материалов, закон Холла- Петча
- •9.1 Механизмы разрушения традиционных поликристаллических материалов
- •Глава 10
- •10 Проблема высокоплотной записи информации, «терабитный барьер» и атомная плотность записи порядка 103 Тбит/см2
- •10.1 Проект наномеханического вентиля
- •10.2 Наноэлектромеханический одноэлектронный транзистор с «механической рукой»
- •10.3 Наномеханическая память вскоре заменит традиционную магнитную
- •10.4 Механическая память на основе нэмс
- •10.5 «Многоножка» стартует с 10 Гб
- •10.6 Память объемом в 100 Гбайт благодаря нанотехнологиям
- •10.6.1Магнитная flash-память на основе углеродных нанотрубок
- •10.7 Открытые микрожидкостные и наножидкостные системы
- •10.8 Ученые построили первый наножидкостный транзистор для химических компьютеров
- •10.9 Сверхточный детектор массы и силы на основе нанотрубки
- •10.9.1 Датчик наноперемещений
- •10.9.2 Нэмс для взвешивания днк
- •10.10 Вращающийся нанопропеллер
- •10.10.1 Новый подход в наномоторах - использование силы поверхностного натяжения
- •10.11 Газовый наносенсор на основе проводящего полимера
- •10.11.1 Газовая нанотурбина
- •10.12 Продукты нанотехнологий завоевывают мировой рынок
- •10.13 Дисплеи нового поколения на мировом рынке
- •10.13.1 Первый цветной дисплей на нанотрубках от компании Motorola
- •10.14 Молекулярные машины вращают днк вдоль оси
- •10.15 Нановелосипед покажет себя на Tour de France
- •Глава 11
- •11 Термодинамические аспекты поверхности
- •11.1 Химический потенциал
- •11.2 Свободная энергия Гиббса и свободная энергия Гельмгольца
- •11.3 Термодинамика поверхности и поверхностей раздела
- •11.4 Термодинамика криволинейной поверхности
- •При равновесии
- •11.5 Структура поверхности и межфазных границ
- •11.6 Нуклеация и рост нанокластеров в нанопорах вещества
- •11.7 Нуклеация и рост кластеров гидроксида железа в нанопорах (экспериментальное приложение термодинамических параметров)
- •11.8 Нуклеация и рост кластеров на основе твердотельных реакций
- •11.9 Твердотельная нуклеация и рост кластеров. Пример термического разложения оксалата железа
- •Глава 12
- •12 Свойства индивидуальных металлических наночастиц
- •12.1 Определение и классификация
- •12.2 Основные параметры проводниковых материалов. Зависимость от состава проводника и внешних факторов
- •12.3 Перспективы развития
- •12.3.1 Основные ограничения и тенденции развития
- •12.4 Предельные размеры моп-приборов
- •12.4. 1 Законы подобия
- •12.5 Туннелирование
- •12.6 Ограничения, связанные со свойствами материалов
- •12.6.1 Ограничения, связанные с функционированием приборов
- •12.6.2 Ограничения ширины линий и резкости
- •12.7 Материал резистов
- •Глава 13
- •13.1 Определения и классификация
- •13.2 Собственные и примесные полупроводники
- •13.3 Особые электронные состояния в конденсированных средах
- •13.4 Основные параметры полупроводниковых материалов
- •13.5 Контакт электронного и дырочного полупроводников. Свойства электронно-дырочного перехода
- •Глава 14
- •14 Квантовые ямы, проволоки и точки. Приготовление квантовых наноструктур
- •14.1 Введение
- •14.2 Приготовление квантовых наноструктур
- •14.3 Эффекты, обусловленные размерами и размерностью нанообъектов
- •14.3.1 Размерные эффекты
- •14.3.2 Размерность объекта и электроны проводимости
- •14.3.3 Ферми-газ и плотность состояний
- •14.3.4 Потенциальные ямы
- •14.3.5 Частичная локализация
- •14.3.6 Свойства, зависящие от плотности состояний
- •14.4 Экситоны
- •14.5 Одноэлектронное туннелирование
- •14.6 Приложения
- •14.6.1 Инфракрасные детекторы
- •14.6.2 Лазеры на квантовых точках
- •14.7 Сверхпроводимость
- •Глава 15
- •15 Магнитные кластеры. Влияние наноструктурирования объемного материала на магнитные свойства. Динамика наномагнитов
- •15.1 Хранение информации наномагнитами
- •15.2 Выращивание наноуглеродных ферромагнетиков
- •15.3 Магнитосопротивление наноструктур
- •15.4 Ферромагнитные жидкости
- •15.5 Магнитные материалы и современная медицина
- •15. 6 Магнитные Поля и Тело человека
- •15.7 Доказательства и сомнения, адвокаты и скептики
- •15. 8 Магнитная терапия сегодня
- •15.8.1 Окончательные выводы преждевременны
- •15.8.2 Магнитно-резонансная томография
- •15.9 Магнитная стимуляция - помощь при лечении психических расстройств
- •15.10 Моторы на постоянных магнитах для сердечников
- •15.11 Магниты как проводники и манипуляторы для медицинских процедур
- •15.11.1 Магнитная жидкость поможет сохранить зрение
- •15.11.2 Магнитоуправляемые сепараторы
- •15.11.3 Магниты для извлечения игл и хранения хирургических инструментов
- •15.11.4 Магнито-жидкостная гипертермия
- •15.11.5 Магнитные наночастицы разрушают раковые клетки
- •15.12 Магнетизм и биология: практика и перспективы. Иглотерапия
- •15.13 Красные кровяные тельца и магнитная память
- •Глава 16
- •16 Кластеры атомов редких газов и молекулярные кластеры
- •16.1 Кластеры инертных газов
- •16.2 Сверхтекучие кластеры
- •16.3 Молекулярные кластеры
- •Глава 17 углеродные наноструктуры
- •17.1 Введение
- •17.2 Углеродные молекулы
- •17.2.1 Природа углеродной связи
- •17.3 Углеродные кластеры
- •17.3.1 Малые углеродные кластеры
- •17.3.2 Открытие фуллерена с60
- •17.3.3 Структура с60 и его кристаллов
- •17.3.4 С60, легированный щелочными металлами
- •17.3.5 Сверхпроводимость в с60
- •17.3.6 Фуллерены с числом атомов, большим или меньшим 60
- •17.3.7 Неуглеродные шарообразные молекулы
- •17.4 Углеродные нанотрубки
- •17.4.1 Методы получения
- •17.4.2 Структура
- •17.4.3 Электрические свойства
- •17.4.4 Колебательные свойства
- •17.4.5 Механические свойства
- •17.5 Применения углеродных нанотрубок
- •17.5.1 Полевая эмиссия и экранирование
- •17.5.2 Компьютеры
- •17.5.3 Топливные элементы
- •17.5.4 Химические сенсоры
- •17.5.5 Катализ
- •17.5.6 Механическое упрочнение
- •Глава 18
- •18 Основные принципы водородной энергетики
- •18.1 Принцип работы водородного топливного элемента (тэ)
- •Глава 19
- •19 Использование нанотрубки в качестве транзистора
- •19.1 Компания Infineon создала самый маленький в мире транзистор на нанотрубке
- •19.2 Ibm утроит производительность транзисторов
- •19.3 Транзистор с плавником от Infineon уменьшил flash-память
- •19.4 Сверхконденсаторы из углеродных нанотрубок
- •19.5 Фотонные транзисторы в кремниевом исполнении
- •19.6 Hp провозглашает конец кремниевой эры
- •19.7 Квантовый выключатель - основа будущей нанологики
- •19.8 Способ массового производства электронных схем на основе нанотрубок
- •19.9 Штампуя наносистемы
- •19.10 Компания tsmc объявила о промышленном выпуске чипов по 65-нанометровому техпроцессу к концу 2005 года
- •19.10.1 Hp избавит мир от транзисторов
- •Глава 20 Наномашины и наноприборы
- •20.1 Микроэлектромеханические системы (memSs)
- •20.2 Наноэлектромеханические системы (nemSs)
- •20.2.1. Изготовление
- •20.2.2 Наноприборы и наномашины
- •20.3 Молекулярные и супрамолекулярные переключатели
Глава 14 200
14 Квантовые ямы, проволоки и точки. Приготовление квантовых наноструктур 200
14.1 Введение 200
14.2 Приготовление квантовых наноструктур 201
14.3 Эффекты, обусловленные размерами и размерностью нанообъектов 204
14.3.1 Размерные эффекты 204
14.3.2 Размерность объекта и электроны проводимости 206
14.3.3 Ферми-газ и плотность состояний 206
14.3.4 Потенциальные ямы 208
14.3.5 Частичная локализация 210
14.3.6 Свойства, зависящие от плотности состояний 211
14.4 Экситоны 212
14.5 Одноэлектронное туннелирование 212
14.6 Приложения 215
14.6.1 Инфракрасные детекторы 215
14.6.2 Лазеры на квантовых точках 216
14.7 Сверхпроводимость 218
Глава 15 219
15 Магнитные кластеры. Влияние наноструктурирования объемного материала на магнитные свойства. Динамика наномагнитов 219
15.1 Хранение информации наномагнитами 223
15.2 Выращивание наноуглеродных ферромагнетиков 225
15.3 Магнитосопротивление наноструктур 226
15.4 Ферромагнитные жидкости 228
15.5 Магнитные материалы и современная медицина 230
15. 6 Магнитные Поля и Тело человека 231
15.7 Доказательства и сомнения, адвокаты и скептики 234
15. 8 Магнитная терапия сегодня 235
15.8.1 Окончательные выводы преждевременны 236
15.8.2 Магнитно-резонансная томография 237
15.9 Магнитная стимуляция - помощь при лечении психических расстройств 238
15.10 Моторы на постоянных магнитах для сердечников 238
15.11 Магниты как проводники и манипуляторы для медицинских процедур 239
15.11.1 Магнитная жидкость поможет сохранить зрение 240
15.11.2 Магнитоуправляемые сепараторы 240
15.11.3 Магниты для извлечения игл и хранения хирургических инструментов 241
15.11.4 Магнито-жидкостная гипертермия 241
15.11.5 Магнитные наночастицы разрушают раковые клетки 242
15.12 Магнетизм и биология: практика и перспективы. Иглотерапия 243
15.13 Красные кровяные тельца и магнитная память 244
Глава 16 244
16 Кластеры атомов редких газов и молекулярные кластеры 244
16.1 Кластеры инертных газов 244
16.2 Сверхтекучие кластеры 245
16.3 Молекулярные кластеры 246
Глава 17 247
УГЛЕРОДНЫЕ НАНОСТРУКТУРЫ 247
17.1 Введение 247
17.2 Углеродные молекулы 247
17.2.1 Природа углеродной связи 247
17.2.2 Новые углеродные структуры 248
17.3 Углеродные кластеры 248
17.3.1 Малые углеродные кластеры 248
17.3.2 Открытие фуллерена С60 249
17.3.3 Структура С60 и его кристаллов 251
17.3.4 С60, легированный щелочными металлами 251
17.3.5 Сверхпроводимость в С60 252
17.3.6 Фуллерены с числом атомов, большим или меньшим 60 253
17.3.7 Неуглеродные шарообразные молекулы 253
17.4 Углеродные нанотрубки 254
17.4.1 Методы получения 254
17.4.2 Структура 256
17.4.3 Электрические свойства 256
17.4.4 Колебательные свойства 259
17.4.5 Механические свойства 259
17.5 Применения углеродных нанотрубок 260
17.5.1 Полевая эмиссия и экранирование 261
17.5.2 Компьютеры 261
17.5.3 Топливные элементы 263
17.5.4 Химические сенсоры 263
17.5.5 Катализ 264
17.5.6 Механическое упрочнение 264
Глава 18 266
18 Основные принципы водородной энергетики 266
18.1 Принцип работы водородного топливного элемента (ТЭ) 267
