- •Глава 1 8
- •Глава 6 66
- •Глава 7 70
- •Глава 8 84
- •Глава 9 101
- •Глава 10 106
- •Глава 11 131
- •Глава 12 153
- •Глава 13 173
- •Глава 14 200
- •Глава 15 219
- •Глава 16 244
- •Глава 17 247
- •17.1 Введение 247
- •Глава 18 266
- •Глава 19 268
- •Глава 20 280
- •Глава 1
- •1. Классификация и методы получения нанокластеров и наноструктур
- •1.1 Молекулярные кластеры
- •1.2 Газовые безлигандные кластеры
- •1.2.1 Источники получения кластеров
- •1.2.2 Масс-спектрометры и детектирование кластеров
- •1.3 Коллоидные кластеры
- •1.4 Твердотельные нанокластеры и наноструктуры
- •1.5 Матричные нанокластеры и супрамолекулярные наноструктуры
- •1.6 Кластерные кристаллы и фуллериты
- •1.7 Компактированные наносистемы и нанокомпозиты
- •1.8 Тонкие наноструктурированные пленки
- •1.9 Углеродные нанотрубки
- •Глава 2
- •2Общие положения
- •2.1Объекты и процессы нанотехнологий
- •2.2 Основная концепция нанотехнологии
- •2.2.1 Физико-химические основы нанотехнологии
- •Глава 3
- •3 Наночастицы, нанонаука, нанотехнология, нанофизика, нанохимия, наномеханика, нанобиология, наномедицина и т.Д., закон Мура
- •3.1 Механические свойства нанокристаллических материалов
- •Глава 4
- •4 Методы контроля аттестации наночастиц, наноизделий и наноструктурированных материалов
- •4.1Методы получения наноструктур
- •4.2 Методы получения наносистем
- •4.3 Особенности ультрадисперсных систем
- •Глава 5 Поверхностные эффекты в нанотехнологиях
- •5.1. Атомные и молекулярные орбитали
- •5.2 Поверхность монокристаллов, нанокластеров и пористых сорбентов
- •5.3 Примесные атомы на поверхности
- •5.4 Поверхность металлов и оксидов металлов (электронные свойства)
- •5.5 Поверхность металлов и оксидов металла (магнитные свойства)
- •5.6 Поверхностные центры кислотного и основного типа
- •5.7 Адсорбция
- •5.8 Примеры адсорбции
- •5.9 Адсорбция молекул воды и атомная динамика атомов железа в пористых ионообменниках.
- •5.10 Адсорбция воды и динамика кластеров воды и полимерной сетки.
- •5.11 Катализ. Примеры каталитических превращений с участием поверхности твердого тела и нанокластеров
- •Глава 6
- •6 Самосборка. Магические цифры. Замена построения синтеза объекта «сверху-вниз» на синтез «снизу-вверх»
- •Глава 7
- •7 Физика наночастиц и нанотехнологии, структура наночастиц. Кластеры
- •7.1 Молекулярные кластеры
- •7.2 Газовые безлигандные кластеры
- •7.2.1 Источники получения кластеров
- •7.2.2 Масс-спектрометры и детектирование кластеров
- •7.3 Коллоидные кластеры
- •7.4 Твердотельные нанокластеры и наноструктуры
- •7.5 Матричные нанокластеры и супрамолекулярные наноструктуры
- •7.6 Кластерные кристаллы и фуллериты
- •7.7 Компактированные наносистемы и нанокомпозиты
- •7.8 Тонкие наноструктурированные пленки
- •Глава 8
- •8 Наноструктурированные материалы. Кристаллизация пленок из растворов-расплавов
- •8.1 Разупорядоченные твердотельные структуры
- •8.1.1 Методы синтеза
- •8.1.2 Механизмы разрушения традиционных поликристаллических материалов
- •8.1.3 Механические свойства
- •8.1.4 Наноструктурированные многослойные материалы
- •8.1.5 Электрические свойства
- •8.1.6 Другие свойства
- •8.1.7 Металлические нанокластеры в оптических стеклах
- •8.1.8 Пористый кремний
- •8.2 Наноструктурированные кристаллы
- •8.2.1 Природные нанокристаллы
- •8.2.2 Теоретическое предсказание существования кристаллических решеток из нанокластеров
- •8.2.3 Упорядоченные структуры наночастиц в цеолитах
- •8.2.4 Кристаллы из металлических наночастиц
- •8.2.5 Упорядоченные решетки наночастиц в коллоидных суспензиях
- •8.2.6 Наноструктурированные кристаллы для фотоники
- •Глава 9
- •9 Механические свойства наноструктурированных материалов, закон Холла- Петча
- •9.1 Механизмы разрушения традиционных поликристаллических материалов
- •Глава 10
- •10 Проблема высокоплотной записи информации, «терабитный барьер» и атомная плотность записи порядка 103 Тбит/см2
- •10.1 Проект наномеханического вентиля
- •10.2 Наноэлектромеханический одноэлектронный транзистор с «механической рукой»
- •10.3 Наномеханическая память вскоре заменит традиционную магнитную
- •10.4 Механическая память на основе нэмс
- •10.5 «Многоножка» стартует с 10 Гб
- •10.6 Память объемом в 100 Гбайт благодаря нанотехнологиям
- •10.6.1Магнитная flash-память на основе углеродных нанотрубок
- •10.7 Открытые микрожидкостные и наножидкостные системы
- •10.8 Ученые построили первый наножидкостный транзистор для химических компьютеров
- •10.9 Сверхточный детектор массы и силы на основе нанотрубки
- •10.9.1 Датчик наноперемещений
- •10.9.2 Нэмс для взвешивания днк
- •10.10 Вращающийся нанопропеллер
- •10.10.1 Новый подход в наномоторах - использование силы поверхностного натяжения
- •10.11 Газовый наносенсор на основе проводящего полимера
- •10.11.1 Газовая нанотурбина
- •10.12 Продукты нанотехнологий завоевывают мировой рынок
- •10.13 Дисплеи нового поколения на мировом рынке
- •10.13.1 Первый цветной дисплей на нанотрубках от компании Motorola
- •10.14 Молекулярные машины вращают днк вдоль оси
- •10.15 Нановелосипед покажет себя на Tour de France
- •Глава 11
- •11 Термодинамические аспекты поверхности
- •11.1 Химический потенциал
- •11.2 Свободная энергия Гиббса и свободная энергия Гельмгольца
- •11.3 Термодинамика поверхности и поверхностей раздела
- •11.4 Термодинамика криволинейной поверхности
- •При равновесии
- •11.5 Структура поверхности и межфазных границ
- •11.6 Нуклеация и рост нанокластеров в нанопорах вещества
- •11.7 Нуклеация и рост кластеров гидроксида железа в нанопорах (экспериментальное приложение термодинамических параметров)
- •11.8 Нуклеация и рост кластеров на основе твердотельных реакций
- •11.9 Твердотельная нуклеация и рост кластеров. Пример термического разложения оксалата железа
- •Глава 12
- •12 Свойства индивидуальных металлических наночастиц
- •12.1 Определение и классификация
- •12.2 Основные параметры проводниковых материалов. Зависимость от состава проводника и внешних факторов
- •12.3 Перспективы развития
- •12.3.1 Основные ограничения и тенденции развития
- •12.4 Предельные размеры моп-приборов
- •12.4. 1 Законы подобия
- •12.5 Туннелирование
- •12.6 Ограничения, связанные со свойствами материалов
- •12.6.1 Ограничения, связанные с функционированием приборов
- •12.6.2 Ограничения ширины линий и резкости
- •12.7 Материал резистов
- •Глава 13
- •13.1 Определения и классификация
- •13.2 Собственные и примесные полупроводники
- •13.3 Особые электронные состояния в конденсированных средах
- •13.4 Основные параметры полупроводниковых материалов
- •13.5 Контакт электронного и дырочного полупроводников. Свойства электронно-дырочного перехода
- •Глава 14
- •14 Квантовые ямы, проволоки и точки. Приготовление квантовых наноструктур
- •14.1 Введение
- •14.2 Приготовление квантовых наноструктур
- •14.3 Эффекты, обусловленные размерами и размерностью нанообъектов
- •14.3.1 Размерные эффекты
- •14.3.2 Размерность объекта и электроны проводимости
- •14.3.3 Ферми-газ и плотность состояний
- •14.3.4 Потенциальные ямы
- •14.3.5 Частичная локализация
- •14.3.6 Свойства, зависящие от плотности состояний
- •14.4 Экситоны
- •14.5 Одноэлектронное туннелирование
- •14.6 Приложения
- •14.6.1 Инфракрасные детекторы
- •14.6.2 Лазеры на квантовых точках
- •14.7 Сверхпроводимость
- •Глава 15
- •15 Магнитные кластеры. Влияние наноструктурирования объемного материала на магнитные свойства. Динамика наномагнитов
- •15.1 Хранение информации наномагнитами
- •15.2 Выращивание наноуглеродных ферромагнетиков
- •15.3 Магнитосопротивление наноструктур
- •15.4 Ферромагнитные жидкости
- •15.5 Магнитные материалы и современная медицина
- •15. 6 Магнитные Поля и Тело человека
- •15.7 Доказательства и сомнения, адвокаты и скептики
- •15. 8 Магнитная терапия сегодня
- •15.8.1 Окончательные выводы преждевременны
- •15.8.2 Магнитно-резонансная томография
- •15.9 Магнитная стимуляция - помощь при лечении психических расстройств
- •15.10 Моторы на постоянных магнитах для сердечников
- •15.11 Магниты как проводники и манипуляторы для медицинских процедур
- •15.11.1 Магнитная жидкость поможет сохранить зрение
- •15.11.2 Магнитоуправляемые сепараторы
- •15.11.3 Магниты для извлечения игл и хранения хирургических инструментов
- •15.11.4 Магнито-жидкостная гипертермия
- •15.11.5 Магнитные наночастицы разрушают раковые клетки
- •15.12 Магнетизм и биология: практика и перспективы. Иглотерапия
- •15.13 Красные кровяные тельца и магнитная память
- •Глава 16
- •16 Кластеры атомов редких газов и молекулярные кластеры
- •16.1 Кластеры инертных газов
- •16.2 Сверхтекучие кластеры
- •16.3 Молекулярные кластеры
- •Глава 17 углеродные наноструктуры
- •17.1 Введение
- •17.2 Углеродные молекулы
- •17.2.1 Природа углеродной связи
- •17.3 Углеродные кластеры
- •17.3.1 Малые углеродные кластеры
- •17.3.2 Открытие фуллерена с60
- •17.3.3 Структура с60 и его кристаллов
- •17.3.4 С60, легированный щелочными металлами
- •17.3.5 Сверхпроводимость в с60
- •17.3.6 Фуллерены с числом атомов, большим или меньшим 60
- •17.3.7 Неуглеродные шарообразные молекулы
- •17.4 Углеродные нанотрубки
- •17.4.1 Методы получения
- •17.4.2 Структура
- •17.4.3 Электрические свойства
- •17.4.4 Колебательные свойства
- •17.4.5 Механические свойства
- •17.5 Применения углеродных нанотрубок
- •17.5.1 Полевая эмиссия и экранирование
- •17.5.2 Компьютеры
- •17.5.3 Топливные элементы
- •17.5.4 Химические сенсоры
- •17.5.5 Катализ
- •17.5.6 Механическое упрочнение
- •Глава 18
- •18 Основные принципы водородной энергетики
- •18.1 Принцип работы водородного топливного элемента (тэ)
- •Глава 19
- •19 Использование нанотрубки в качестве транзистора
- •19.1 Компания Infineon создала самый маленький в мире транзистор на нанотрубке
- •19.2 Ibm утроит производительность транзисторов
- •19.3 Транзистор с плавником от Infineon уменьшил flash-память
- •19.4 Сверхконденсаторы из углеродных нанотрубок
- •19.5 Фотонные транзисторы в кремниевом исполнении
- •19.6 Hp провозглашает конец кремниевой эры
- •19.7 Квантовый выключатель - основа будущей нанологики
- •19.8 Способ массового производства электронных схем на основе нанотрубок
- •19.9 Штампуя наносистемы
- •19.10 Компания tsmc объявила о промышленном выпуске чипов по 65-нанометровому техпроцессу к концу 2005 года
- •19.10.1 Hp избавит мир от транзисторов
- •Глава 20 Наномашины и наноприборы
- •20.1 Микроэлектромеханические системы (memSs)
- •20.2 Наноэлектромеханические системы (nemSs)
- •20.2.1. Изготовление
- •20.2.2 Наноприборы и наномашины
- •20.3 Молекулярные и супрамолекулярные переключатели
17.3.3 Структура с60 и его кристаллов
Молекула С60 была названа фуллереном по имени архитектора и изобретателя Р. Бакминстера Фуллера, сконструировавшего геодезический свод, напоминающий структуру С60. Первоначально молекулу назвали бакминстерфуллереном, но это название несколько неудобно, так что оно было сокращено до фуллере на. Схема молекулы показана на рис. 17.6. Она имеет 12 пентагональных (пятиугольных) и 20 гексагональных (шестиугольных) симметрично расположенных граней, образующих форму, близкую к шару. На самом деле, геометрия молекулы фуллерена ближе к форме футбольного мяча, также состоящего из пяти и шестигранных фасеток. Эти шарообразные молекулы могут соединяться друг с другом в твердом теле с образованием гранецентрированной (ГЦК) кристаллической решетки, показанной на рис. 17.7. Расстояние между центрами ближайших молекул в гранецентрированной решетке, удерживаемых слабыми Ван дер Ваальсовыми силами, составляет около 1 нм. Поскольку С60 растворим в бензоле, его монокристалл можно вырастить при медленном выпаривании раствора С60 в бензоле.
Рис.
17.6.
Структура
молекулы фуллерена С60
Рис.
17.7.
Элементарная ячейка кристаллической
решетки фуллерена С60
(большие шары),
легированного щелочными атомами
(темные кружки).
17.3.4 С60, легированный щелочными металлами
В ГЦК-структуре фуллеренов 26% объема элементарной ячейки пустует, так что щелочные атомы могут легко разместиться в пустотах между сферическими молекулами вещества. Если кристаллы С60 и металлический калий поместить в откачанную трубку и нагреть до 400°С, пары калия диффундируют в пустоты с образованием соединения К3С60. Кристалл С60 - диэлектрик, а при легировании щелочными атомами становится проводником. На рис. 17.7 показано положение щелочных атомов в решетке, где они занимают два свободных тетраэдрических положения и большую октаэдрическую пустоту (в расчете на одну молекулу С60). В тетраэдрической позиции щелочной атом имеет четыре ближайших соседа из молекул С60, а в октаэдрической — шесть. При легировании С60 калием до образования К3С60 атомы калия ионизируются до К+, а их электроны связываются с С60, который становится отрицательным ионом С60-3.Таким образом, каждая молекула С60 получает три лишних электрона, слабо связанных с молекулой и способных передвигаться по кристаллу, что делает С60 электропроводным. В таком случае говорят, что С60 допирован электронами.
17.3.5 Сверхпроводимость в с60
Сверхпроводимость — это состояние вещества, при котором электрическое сопротивление образца становится равным нулю, а магнитное поле в него проникать не может. Последнее проявляется как уменьшение магнитной восприимчивости χ образца до значения χ = -1. В 1991 году, когда А.Ф. Хе-бард с группой в Bell Telephone Laboratory залегировал кристалл С60 калием по вышеописанной методике и проверил полученное таким способом вещество на сверхпроводимость, то к всеобщему удивлению были найдены свидетельства перехода в сверхпроводящее состояние при температуре 18 К. На рис. 17.8 показано падение намагниченности, означающее присутствие сверхпроводящей фазы. Обнаружилось, что новый класс сверх-проводящих веществ имеет простую кубическую решетку и содержит всего два химических элемента. Вскоре после первого сообщения было обнаружено, что решетку можно легировать многими щелочными атомами, а температура сверхпроводящего перехода может быть поднята до 33 К для Cs2RbC60. При увеличении радиуса атома примеси параметр кубической решетки С60 увеличивается, а с ним увеличивается и критическая температура сверхпроводящего перехода. На рис. 17.9 показана зависимость температуры перехода от параметра решетки.
Выше уже упоминалось, что графит состоит из плоскопараллельных слоев атомов углерода. Между этими слоями возможно поместить другие атомы, что называется интерколляцией. При интерколлировании графита атомами калия кристалл графита становится сверхпроводящим при чрезвычайно низких температурах, составляющих несколько десятых Кельвина.
Рис.
17.8. Кривая намагниченности К3С60
от температуры
демонстрирует переход в
сверхпроводящее состояние.
Рис.
17.9.
Зависимость
температуры сверхпроводящего
перехода соединения А3С60
от
параметра решетки, где А — щелочной
атом
(10 А = 1 нм).
