- •Глава 1 экологические основы охраны окружающей среды
- •Предмет, задачи и методы современной экологии
- •Факторы среды обитания организмов
- •Среда обитания организмов
- •Факторы среды обитания
- •Основные понятия
- •Биотические факторы
- •Абиотические факторы
- •Антропогенные факторы
- •Воздействие факторов среды на здоровье человека
- •Основные понятия экологии
- •Биосфера
- •Организация биосферы
- •Круговорот веществ и энергии в биосфере
- •Круговорот веществ в биосфере
- •Основные закономерности движения энергии в биосфере
- •Энергетика экосистем
- •Техносфера, ноосфера
- •Техносфера и техносферогенез
- •Рост техносферы и потери биосферы в XX в. (Акимова, Хаскин, 2000)
- •Ноосфера и ноосферогенез
- •Вопросы и задания
- •Глава 2
- •Природопользование и его классификация
- •Классификация природных ресурсов
- •Климатические ресурсы и их использование
- •Характеристика, состав и значение атмосферы
- •Климат Республики Беларусь
- •Потенциал использования солнечной и ветровой энергии
- •Характеристики современных европейских солнечных коллекторов
- •Земельные и минеральные ресурсы, их состояние и использование
- •Земельные ресурсы
- •Деградация почв
- •Характеристика минеральных ресурсов
- •Водные ресурсы, их состояние и использование
- •Характеристика водных ресурсов
- •Глава 2. Природные ресурсы и основы природопользования
- •Потенциал гидроэнергетических ресурсов
- •Растительные и животные ресурсы, их состояние и использование
- •Растительные ресурсы
- •Животный мир
- •Потенциал биоэнергетических ресурсов
- •Потенциал энергосбережения объектов сельскохозяйственного производства
- •Топливно-энергетические ресурсы и их использование
- •Информационные ресурсы
- •Перспективы использования природных ресурсов
- •Вопросы и задания
- •Глава 3 экологическая и энергетическая характеристика производства
- •3.1. Основные источники выбросов загрязняющих веществ и воздействий на биосферу
- •Основные принципы оценки экологичности производства
- •Удельные выбросы загрязняющих веществ и энергозатраты производства стального литья, г/кг продукции
- •Удельные выбросы загрязняющих веществ и энергозатраты процессов нефтепереработки, г/кг нефти-сырца
- •Удельные выбросы загрязняющих веществ
- •И энергозатраты производства резинотехнических изделий, г/кг продукции
- •Удельные выбросы загрязняющих веществ производства моторных топлив и масел, г/кг продукции
- •Удельное пылевыделение на различных стадиях производства щебня, кг/т
- •Экологическая характеристика автотранспорта
- •Нормы выбросов легковых автомобилей массой до 1250 кг, г/км
- •Нормы выбросов дизельных грузовых автомобилей и автобусов, г/(кВт*ч)
- •Выбросы загрязняющих веществ автомобилем
- •Выбросы загрязняющих веществ в атмосферу электростанцией мощностью 1000 мВт в зависимости от вида топлива, т/год
- •Экологическая характеристика предприятий энергетики
- •Общие сведения
- •Энергия в природе, ее виды и качество
- •Глава 3. Экологическая и энергетическая характеристика производства
- •Получение, преобразование и транспортировка энергии
- •Энергоресурсы и энергетический баланс предприятия
- •Топливно-энергетический комплекс и энергетическая безопасность
- •Экологические проблемы энергетики
- •Выбросы загрязняющих веществ в атмосферу при сжигании различных видов топлива на тэс, г/(кВт • ч)
- •Состав золы уноса, образующейся при сжигании мазута на тэс
- •Сравнительная экологическая характеристика работы электростанций
- •Проникающая способность аэрозолей в организм человека
- •Глава 4 антропогенное воздействие на окружающую среду 4.1. Классификация видов загрязнения
- •Глава 4. Антропогенное воздействие на окружающую среду
- •Состояние загрязнения природной среды и его влияние на биосферу
- •Валовые выбросы загрязняющих веществ в атмосферу от стационарных и мобильных источников на территории Беларуси в 2009 г., тыс. Т.
- •Удельные выбросы загрязняющих веществ в атмосферу от стационарных и мобильных источников на территории Беларуси в 2009 г.
- •Глобальные и региональные последствия загрязнения окружающей среды
- •Глобальное изменение климата
- •Истощение озонового слоя
Основные закономерности движения энергии в биосфере
Все преобразования веществ в процессе круговорота требуют затрат энергии. Ни один живой организм самостоятельно не продуцирует энергию, она может быть получена только извне. В современной биосфере основным источником энергии для биогенного круговорота является Солнце. По приблизительным расчетам, если энергию солнечного излучения принять за 100 %, то только 15 % ее достигает поверхности Земли и только 1 % связывается в виде органического вещества растениями, основными продуцентами первичной продукции. Около половины этой энергии расходуется на процессы жизнедеятельности (потери на дыхание). Оставшиеся 50 % идут на рост биомассы. Таким образом, чистая продукция соответствует примерно 0,5 % солнечной энергии, падающей на Землю. Накопленная в процессе фотосинтеза биомасса растений (первичная продукция) - это резерв, часть которого используется в качестве пищи организмами - гетеротрофами (консументами 1-го порядка). Остальная часть - это реальное количество массы растительности в экосистеме.
По словам Одума, «экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы».
Жизнь возникает и развивается в потоке энергии, которая частично аккумулируется в биосистемах, в разного рода круговоротах вещества. Ранее мы рассмотрели только глобальные круговороты, охватывающие всю биосферу в целом. Кроме этого существуют и малые круговороты, характерные для отдельных экосистем. В любом многоклеточном организме также можно выделить несколько круговоротов, необходимых для жизнедеятельности веществ, аналогичных биогеохимическим циклам биосферы.
Подобные движения вещества можно наблюдать и в цитоплазме одноклеточных организмов. Даже в небиологических системах при достаточно большой разнице сил на входе и выходе системы можно наблюдать переход ее в нелинейное состояние, иногда достаточно явно сопровождающийся возникновением циклических движений вещества или автоколебаний (например, турбулентное течение жидкости, ячейки Бернара, реакции Белоусова- ЯСаботинского и т. п.). Иначе говоря, внутрисистемный круговорот веществ это и есть способ аккумулировать энергию в системе.
Движение энергии в биосфере существенно отличается от движения вещества. Согласно принципу роста энтропии, поток энергии направлен всегда в одну сторону, круговорот энергии невозможен. Живое вещество уменьшает энтропию части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться, но ее нельзя использовать вторично.
Принципиальная невозможность утилизации тепловой энергии на фоне прогрессирующего роста количества энергии, высвобождаемой человеком непосредственно на планете (сжигание топлива, расщепление ядра, ядерный синтез и т. п.), помимо солнечной энергии, есть один из важнейших факторов надвигающейся экологической катастрофы.
Известно, что потребление энергии человечеством на нашей планете исторически протекало крайне неравномерно и возрастало параллельно со скоростью накопления информации. Люди за всю историю своего существования израсходовали около 900-950 тыс. ТВт*ч энергии всех видов, причем почти две трети этого количества приходится на последние 40-50 лет. За последние 100 лет
мировое потребление энергии увеличилось в 14 раз. Суммарное потребление первичных энергоресурсов за это время превысило 380 млрд т условного топлива со средним КПД энергетики техносферы равным 30 %.
Относительный вклад различных энергоносителей в общее использование энергии характеризуется следующими средними величинами: нефть - 34 %, уголь - 27, газ - 17, ядерная энергия - 8,5, гидроэнергия - 6, прочие источники - 7,5 %.
Энергетическая мощность нынешней техносферы по величине приблизительно равна 6 % всей продукционной мощности экосферы.
