- •1. Основні поняття, мета та завдання хімічної термодинаміки
- •2. Перший закон термодинаміки
- •3. Робота розширення ідеального газу. Вираз першого закону термодинаміки для різних процесів
- •4. Закони термодинаміки
- •5. Термохімія. Теплота утворення речовини. Закон Гесса.
- •6. Що таке внутрішня енергія, ентальпія, ентропія, вільна енергія Гіббса?
- •7. Другий закон термодинаміки. Ентропія. Умови самочинного протікання процесу
- •8. Які величини називаються параметрами стану і які функціями стану?
- •9. До яких термодинамічних систем належать живі організми? Чи можна застосувати закони термодинаміки до біологічних процесів?
- •10. Дайте визначення поняттю «термодинамічний процес». Термодинамічні параметри. Який процес називається рівноважним, нерівноважним?
- •11. Що таке тепловий ефект хімічної реакції? Ендотермічні і екзотермічні реакції.
- •12. Дайте визначення поняттю «термодинамічна система». Гомогенні та гетерогенні системи. Ізольовані, закриті, відкриті системи.
- •13. Класифікація хімічних реакцій. Механізм хімічних реакцій
- •14. Залежність швидкості реакції від температури. Правило Вант-Гоффа
- •15. Що таке константа швидкості хімічної реакції? Від яких факторів вона залежить?
- •16. Природа каталітичної дії. Ферментативний каталіз
- •17. Швидкість хімічної реакції та фактори, що на неї впливають
- •18. Основні закономірності хімічної кінетики
- •19. Як визначити швидкість хімічної реакції? Основний постулат хімічної кінетики
- •20. Поняття про оборотні хімічні реакції та хімічну рівновагу
- •21.Розчини, класифікація розчинів. Які існують способи вираження концентрації. Розчину?
- •22. Яку систему називають істинним розчином і чим він відрізняється від колоїдного?
- •23. Чим пояснити, що розчини киплять при вищій, а замерзають при нижчій температурі, ніж чисті розчинники?
- •24. Закони Рауля. Кріоскопія. Ебуліоскопія
- •25. Що таке осмос, яке його значення в біології? Як експериментально визначають осмотичний тиск розчинів?
- •26. Яке значення мали методи кріоскопії та ебуліоскопії у розвитку хімії? Які величини можна розрахувати, використовуючи виміряні т кипіння і т кристалізації розчинів неелектролітів та електролітів?
- •27. Які розчини називають ізотонічними, гіпертонічними, гіпотонічними?
- •28. Властивості розчинів електролітів. Ізотонічний коефіцієнт
- •29. Який фізичний зміст ізотонічного коефіцієнта і, як його визначають? Напишіть рівняння, яке зв’язує величину і із ступенем дисоціації електроліту?
- •30. Теорія електролітичної дисоціації Арреніуса. Недоліки теорії електролітичної дисоціації та її подальший розвиток
- •31. Основні положення теорії сильних електролітів. Активність
- •32. Який механізм переносу електричного струму провідників першого і другого роду?
- •33. Що таке питома електропровідність? Як вона змінюється при розбавленні розчинів сильних і слабких електролітів ?
- •34. Що таке молярна електропровідність? Як вона змінюється при розбавленні розчинів сильних і слабких електролітів?
- •35. Чому рухливість йонів гідроксонію і гідроксилу значно перевищує рухливість інших йонів?
- •36 . Кондуктометрія та її практичне застосування
- •37. Електродний потенціал електроду. Рівняння Нернста.
- •38. Електрорушійна сила. Гальванічний елемент Даніеля-Якобі
- •39. Що таке електроди першого і другого роду.
- •40. Іонний добуток води. Водневий і гідроксильний показники
- •41. Потенціометричне титрування
- •42. Буферні розчини
7. Другий закон термодинаміки. Ентропія. Умови самочинного протікання процесу
• Дру́гий закон термодина́міки — один із основних законів фізики, закон про неспадання ентропії в ізольованій системі. Він накладає обмеження на кількість корисної роботи, яку може здійснити тепловий двигун. На засадничому рівні другий закон термодинаміки визначає напрямок протікання процесів у фізичній системі - від порядку до безладу. Існує багато різних формулювань другого закону термодинаміки, загалом еквівалентних між собою. Неможливо побудувати машину, яка б працювала циклічно, охолоджувала б джерело тепла чи піднімала вгору вантажі, не викликаючи при цьому жодних змін в природі.
• Ентроп́ія S — термодинамічна величина, міра розсіювання тепла. Внаслідок ентропії частина енергії термодинамічної системи не може бути використаною для виконання роботи, оскільки пов'язана з незворотними процесами розсіяння. Вона також є мірою безладу в термодинамічній системі.
8. Які величини називаються параметрами стану і які функціями стану?
Якщо параметри стану термодинамічної системи мають цілком певне значення і з часом не змінюються при незмінних зовнішніх умовах, то така система перебуває в стані рівноваги. Коли ж параметри стану змінюються з часом, то в системі відбувається термодинамічний процес. Прикладом термодинамічного процесу може бути зміна об'єму газу, що супроводжується зміною тиску й температури.
Стан системи, що не змінюється в часі називається стаціонарним. Якщо стаціонарний стан системи, не зумовлений перебігом якогось зовнішнього відносно системи процесу, то такий стан називається термодинамічною рівновагою.
Нерівноважний стан — стан системи, виведеної з термодинамічної рівноваги. У системі, що знаходиться в нерівноважному стані, відбуваються необоротні процеси, які прагнуть повернути систему у стан термодинамічної рівноваги, за умови відсутності чинників, що перешкоджають цьому, наприклад, відведення (або підведення) енергії чи речовини з системи. В іншому випадку, можливим є стаціонарний (що не змінюється з часом) нерівноважний стан.
Процес повернення термодинамічної системи до рівноважного стану після виведення її з цього стану називають релаксацією.
Стандаpтний термодинамiчний стан
• 1. Вибраний термодинамічний стан, відносно якого обчислюються термодинамічні величини компонентів даної фази. У
найпростішому випадку це може бути стан чистого компонента чи компонента в дуже розведеному розчині. Взагалі, це набір умов, вибраних для зручності порівняння термодинамічних властивостей. Стандартними станами вважаються:
• а) для газів у випадку чистих речовин — це газ при стандартному тиску, з допущенням, що газ поводиться як ідеальний;
• б) для чистої фази, чи суміші, чи розчинника в рідкому чи твердому стані — це стан чистої речовини в рідкій чи твердій фазі при стандартному тиску;
• в) для розчиненого (солюта) в розчині — це (гіпотетичний) стан при стандартній моляльності, стандартному тиску чи стандартній концентрації, що поводить себе як безконечно розбавлений розчин;
• г) для чистої речовини, концепція стандартного стану прийнятна до речовини з добре визначеним агрегатним станом з точно встановленим, але довільно вибраним стандартним тиском.
Температура не включається в означення стандартного стану і повинна вказуватися, але коли не наводиться, то відповідає 25 °C.
2. Стан системи, при якому речовина перебуває в своїй найстабільнішій формі за стандартних умов, тиск 1·105 Па та температура 298 К.
Функції стану термодинамічної системи
Функцією стану називають таку фізичну характеристику системи, зміна якої під час переходу системи з одного стану до іншого не залежить від виду відповідного цьому переходутермодинамічного процесу, а повністю визначається значеннями параметрів початкового і кінцевого станів. Функції станів включають у свій перелік екстенсивні (залежні від маси) та інтенсивні (не залежні від маси) величини.
До екстенсивних величин належать:
• внутрішня енергія U;
• ентальпія H;
• ентропія S;
• ізохорно-ізотермний потенціал (вільна енергія Гельмгольца) F;
• ізобарно-ізотермний потенціал (вільна енергія Ґіббса) G.
До інтенсивних величин належать:
• температура;
• густина;
• в'язкість тощо.
