- •Раздел 1. Числовые и буквенные выражения
- •Тема 1.1 Делимость чисел
- •Делимость. Делители
- •Деление с остатком
- •Простые числа
- •Решение сравнений
- •Текстовые задачи на целые числа
- •Тема 1.2 Комплексные числа
- •Изображение комплексных чисел. Модуль и аргумент комплексного числа
- •Тригонометрическая форма комплексного числа
- •Тема 1.3 Многочлены
- •Деление многочленов с остатком.
- •Корни многочленов
- •Формула бинома Ньютона
- •Тема 1.4. Корни и степени
- •Тема 1.5. Логарифм
- •Тема 1.6. Преобразования простейших выражений
- •Раздел 2. Тригонометрия
- •Тема 2.1. Тригонометрические функции и преобразования тригонометрических выражений
- •Тема 2.2 Обратные тригонометрические функции. Тригонометрические уравнения и неравенства
- •Тригонометрические уравнения
- •Раздел 3. Функции
- •Тема 3.1. Функция и ее основные свойства
- •График функции
- •Тема 3.2. Степенная, тригонометрическая, показательная и логарифмическая функции. Преобразования графиков
- •Основные свойства логарифмической функции:
- •Преобразования графиков функции.
- •Раздел 4. Начала математического анализа
- •Тема 4.1. Понятие о пределах. Производная функции
- •Предел монотонной последовательности. Определение. Последовательность называется монотонно возрастающей, если для любого : .
- •Вторая производная и ее физический смысл
- •Тема 4.2. Первообразная и определенный интеграл
- •Раздел 5. Уравнения и неравенства
- •Тема 5.1. Уравнения и неравенства
- •Решение рациональных уравнений
- •Показательные уравнения
- •Раздел 6. Элементы комбинаторики, статистики и теории вероятностей
- •Тема 6.1. Элементы комбинаторики, статистики и теории вероятностей
- •Основные законы комбинаторики. Правило суммы.
- •Правило произведения.
- •Правило произведения
- •Факториал
- •Размещения.
- •Формула бинома Ньютона
- •Свойства биномиальных коэффициентов
- •Случайные события и вероятности.
- •Классическое определение вероятности.
- •Раздел 7. Геометрия
- •Тема 7.1. Геометрия на плоскости
- •Биссектриса
- •Свойства биссектрис треугольника
- •Основные теоремы
- •Формулы площади треугольника
- •Формула Герона:
- •Теорема (об отрезках хорды).
- •Геометрические преобразования.
- •Тема 7.2. Прямые и плоскости в пространстве
- •Параллельные прямые.
- •Теорема о параллельных прямых.
- •Скрещивающиеся прямые.
- •Признак и теорема о скрещивающихся прямых.
- •Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости.
- •Тема 7.3. Многогранники
- •Тема 7.4. Тела и поверхности вращения
- •Тема 7.5. Объемы тел и площади их поверхностей
- •Тема 7.6. Координаты и векторы
- •Расстояние от точки до плоскости Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле
- •Векторы
Параллельные прямые.
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и при этом не пересекаются. Для обозначения параллельных прямых используют специальный значок - ||.
Запись
означает, что прямая а параллельна
прямой
.
На рисунке представленном выше, прямые
а и с параллельны.
Теорема о параллельных прямых.
Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной и притом только одна.
Лемма о пересечении плоскости параллельными прямыми.
Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Скрещивающиеся прямые.
Две прямые, которые лежат в одной плоскости, могут либо пересекаться либо быть параллельными. Но в пространстве две прямые не обязательно должны принадлежать оной плоскости. Они могут быть расположены в двух разных плоскостях.
Очевидно, что прямые расположенные в разных плоскостях не пересекаются и не являются параллельными прямыми. Две прямые, которые не лежат в одной плоскости, называются скрещивающими прямыми.
На следующем рисунке показаны две скрещивающиеся прямые a и b, которые лежат в разных плоскостях.
Признак и теорема о скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Теорема о скрещивающихся прямых: через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.
Таким образом, мы рассмотрели все возможные случаи взаимного расположения прямых в пространстве. Их всего три.
1. Прямые пересекаются. (То есть они имеют лишь одну общую точку.)
2. Прямые параллельны. (То есть они не имеют общих точек и лежат в одной плоскости.)
3. Прямые скрещиваются. (То есть они расположены в разных плоскостях.)
Прямая и плоскость
Три случая взаимного расположения прямой и плоскости в пространстве:
1. Прямая лежит в плоскости.
2. Прямая и плоскость имеют только одну общую точку (т.е. пересекаются).
3. Прямая и плоскость не имеют ни одной общей точки.
Прямая и плоскость называются параллельными, если они не имеют общих точек.
Признак параллельности прямой и плоскости. Если прямая, не принадлежащая плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельно данной плоскости.
Свойство прямой, параллельной плоскости. Если в одной из пересекающихся плоскостей лежит прямая, параллельная другой плоскости, то она параллельна линии пересечения плоскостей.
Плоскости
Параллельные плоскости – плоскости, не имеющие общих точек.
Признаки параллельности плоскостей:
– Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
– Если две плоскости перпендикулярны одной и той же прямой, то эти плоскости параллельны.
Свойства параллельных плоскостей
– Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения плоскостей параллельны.
– Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.
Перпендикулярность прямых и плоскостей
Определение. Прямая, пресекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна каждой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Теорема. Признак перпендикулярности прямой и плоскости. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Теорема. 1-ое свойство перпендикулярных прямой и плоскости.
Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Теорема. 2-ое свойство перпендикулярных прямой и плоскости.
Две прямые, перпендикулярные одной и той же плоскости, параллельны.
Теорема. О трех перпендикулярах.
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной.
И обратно: Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Определение. Две пересекающиеся плоскости, называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.
Теорема. Признак перпендикулярности плоскостей.
Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
