- •Раздел 1. Числовые и буквенные выражения
- •Тема 1.1 Делимость чисел
- •Делимость. Делители
- •Деление с остатком
- •Простые числа
- •Решение сравнений
- •Текстовые задачи на целые числа
- •Тема 1.2 Комплексные числа
- •Изображение комплексных чисел. Модуль и аргумент комплексного числа
- •Тригонометрическая форма комплексного числа
- •Тема 1.3 Многочлены
- •Деление многочленов с остатком.
- •Корни многочленов
- •Формула бинома Ньютона
- •Тема 1.4. Корни и степени
- •Тема 1.5. Логарифм
- •Тема 1.6. Преобразования простейших выражений
- •Раздел 2. Тригонометрия
- •Тема 2.1. Тригонометрические функции и преобразования тригонометрических выражений
- •Тема 2.2 Обратные тригонометрические функции. Тригонометрические уравнения и неравенства
- •Тригонометрические уравнения
- •Раздел 3. Функции
- •Тема 3.1. Функция и ее основные свойства
- •График функции
- •Тема 3.2. Степенная, тригонометрическая, показательная и логарифмическая функции. Преобразования графиков
- •Основные свойства логарифмической функции:
- •Преобразования графиков функции.
- •Раздел 4. Начала математического анализа
- •Тема 4.1. Понятие о пределах. Производная функции
- •Предел монотонной последовательности. Определение. Последовательность называется монотонно возрастающей, если для любого : .
- •Вторая производная и ее физический смысл
- •Тема 4.2. Первообразная и определенный интеграл
- •Раздел 5. Уравнения и неравенства
- •Тема 5.1. Уравнения и неравенства
- •Решение рациональных уравнений
- •Показательные уравнения
- •Раздел 6. Элементы комбинаторики, статистики и теории вероятностей
- •Тема 6.1. Элементы комбинаторики, статистики и теории вероятностей
- •Основные законы комбинаторики. Правило суммы.
- •Правило произведения.
- •Правило произведения
- •Факториал
- •Размещения.
- •Формула бинома Ньютона
- •Свойства биномиальных коэффициентов
- •Случайные события и вероятности.
- •Классическое определение вероятности.
- •Раздел 7. Геометрия
- •Тема 7.1. Геометрия на плоскости
- •Биссектриса
- •Свойства биссектрис треугольника
- •Основные теоремы
- •Формулы площади треугольника
- •Формула Герона:
- •Теорема (об отрезках хорды).
- •Геометрические преобразования.
- •Тема 7.2. Прямые и плоскости в пространстве
- •Параллельные прямые.
- •Теорема о параллельных прямых.
- •Скрещивающиеся прямые.
- •Признак и теорема о скрещивающихся прямых.
- •Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости.
- •Тема 7.3. Многогранники
- •Тема 7.4. Тела и поверхности вращения
- •Тема 7.5. Объемы тел и площади их поверхностей
- •Тема 7.6. Координаты и векторы
- •Расстояние от точки до плоскости Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле
- •Векторы
Классическое определение вероятности.
Пусть
в результате опыта может произойти одно
из n элементарных
событий, причем событию
благоприятствуют m
из них (
).
Тогда вероятностью события
называется отношение числа элементарных
исходов, благоприятствующих появлению
события
,
к общему числу равновозможных элементарных
исходов:
.
Пример. Из пяти букв разрезной азбуки составлено слово ДОМИК. Ребенок, не умеющий читать, рассыпал эти буквы и затем выложил три из них в произвольном порядке. Найти вероятность того, что у него получилось слово КОД. (Предполагается, что ребенок не переворачивает буквы.)
Решение.
Пусть случайное
событие
состоит в том, что получено слово КОД.
Число равновозможных элементарных
исходов равно числу размещений из 5
элементов по 3:
.
Поскольку
все буквы в первоначальном слове разные,
то среди 60 исходов не будет двух
одинаковых, то есть слово КОД встречается
только один раз:
.
Пример. Валя выбирает случайное трехзначное число. Найдите вероятность того, что оно делится на 51.
Решение. Таких чисел 18, (по 2 в каждой сотне: 102, 153, 204, …) Всего трехзначных чисел 900.
Ответ. 0,02.
Пример. Валя выбирает случайное трехзначное число. Найдите вероятность того, что оно делится на 51.
Решение. Таких чисел 18, (по 2 в каждой сотне: 102, 153, 204, …) Всего трехзначных чисел 900.
Ответ. 0,02.
Пример. В магазине стоят два автомата. Каждый из них может быть неисправен с вероятностью 0,06 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
Решение.
Противоположное событие состоит в том,
что оба неисправны
,
.
Ответ. 0,9964.
Пример. В некоторой местности утро в июле может быть либо ясным, либо пасмурным. Наблюдения показали:
Если июльское утро ясное, то вероятность дождя в этот день 0,1.
Если июльское утро пасмурное, то вероятность дождя в течение дня равна 0,5.
Вероятность того, что утро в июле будет пасмурным равна 0,2.
Найдите вероятность того, что в случайно взятый июльский день дождя не будет.
Решение.
.
Ответ. 0,82.
Раздел 7. Геометрия
Тема 7.1. Геометрия на плоскости
Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.
Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.
Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма
Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.
Геометрические места точек.
Решение задач с помощью геометрических преобразований и геометрических мест.
Теорема Чевы и теорема Менелая.
Эллипс, гипербола, парабола как геометрические места точек.
Неразрешимость классических задач на построение.
Треугольником называется
фигура, которая состоит из трёх точек,
не лежащих на одной прямой, и трёх
отрезков, попарно соединяющих эти точки.
Точки называются вершинами треугольника,
а о
трезки
- его сторонами.
