- •Введение
- •1 Классификация судов
- •1.1 Современное состояние Мирового судостроения и судоходства
- •1.2 Классификация транспортных судов
- •1.3 Классификация промысловых судов
- •1.4 Эксплуатационные качества судна
- •1.5 Российский морской регистр судоходства
- •2 Общие понятия о строении судна и его составных частей
- •2.1 Конструкция корпуса судна
- •2.2 Системы набора корпуса судна
- •2.3 Основные конструктивные элементы корпуса
- •2.4 Судовых помещений и их расположение на судне
- •3 Мореходные качества судна
- •3.1 Главные размерения судна
- •3.2 Посадка судна
- •3.3 Запас плавучести
- •3.4 Грузовая марка
- •3.5 Плавучесть судна
- •3.6 Начальная остойчивость судна
- •3.7 Непотопляемость судна
- •4 Рулевое устройство
- •4.1 Конструкции рулей
- •4.2 Пост управления
- •4.3 Рулевые машины
- •4.4 Рулевые приводы
- •4.5 Уход за рулевым устройством
- •5 Якорное устройство
- •5.1 Типы якорей
- •5.2 Якорные цепи
- •5.3 Якорные механизмы
- •5.4 Уход за якорным устройством
- •6 Швартовное устройство
- •6.1 Основные элементы швартовного устройства
- •6.2 Основные типы швартовных канатов
- •6.3 Устройство кранцевой защиты
- •7 Грузовое устройства
- •7.1 Грузовые стрелы и краны
- •7.2 Конструкция легкой грузовой стрелы
- •7.3 Люковые закрытия
- •8 Общесудовые и специальные системы и их элементы
- •8.1 Назначение и классификация судовых систем
- •8.2 Конструктивные элементы судовых систем
- •8.3 Типы трубных соединений
- •9 Спасательные средства
- •9.1 Коллективные средства спасения
- •9.2 Индивидуальные спасательные средства
- •9.3 Размещение спасательных средств на судне. Снабжение судов спасательными средствами
- •9.4 Шлюпбалки. Спусковые устройства
- •10 Рангоут и такелаж. Морские узлы
- •10.1 Рангоутно - такелажное вооружение парусного судна
- •10.2 Рангоут и такелаж судна с механическим двигателем
- •10.3 Такелажное снаряжение
- •10.4 Троса, блоки и тали
- •10.5 Такелажные работы с тросами. Такелажный инструмент
- •10.6 Морские узлы
- •11 Спасение на море
- •11.1 Поиск аварийных судов с помощью спутниковой системы связи
- •11.2 Снятие людей с терпящего бедствие судна
- •11.3 Снятие судна с мели
- •11.5 Плавание в штормовых условиях
- •12 Устройство и управление шестивесельным ялом
- •12.1 Устройство и снабжение шестивесельного яла.
- •12.2 Парусное вооружение шестивесельного яла
- •13 Устав службы на судах рыбопромыслового флота рф
- •13.1 Общее положение
- •13.2 Экипаж судна
- •13.3 Судовые службы
- •13.4 Организация сохранения человеческой жизни на море, обеспечение живучести судна
- •13.5 Судовые правила
- •14 Борьба за живучесть судна
- •14.1 Предупредительные мероприятия по обеспечению живучести судна
- •14.2 Аварийное снабжение судов
- •14.3 Организация борьбы экипажа за живучесть судна
- •14.4 Обеспечение пожарной безопасности судна
- •14.5 Борьба экипажа с пожаром на судне
- •16 Огни и знаки судов. Звуковые сигналы судов. Сигналы бедствия
- •16.1 Средства связи и сигнализации
- •16.2 Организация наблюдения на море
- •16.3 Характеристика судовых навигационных огней, знаков и звуковых сигналов
- •16.4 Огни и знаки судов на ходу, на якоре и на мели
- •16.5 Сигналы бедствия
- •Список литературы
10.4 Троса, блоки и тали
Эксплуатационные качества тросов. Тросами (канатами) называются изделия из нитей растительных и искусственных волокон или из стальных проволок. По материалу, использованному для изготовления, тросы подразделяются на растительные, синтетические, стальные и комбинированные, а по способу изготовления — на витые (крученые), невитые и плетеные.
При выборе троса для работы в конкретных условиях руководствуются его эксплуатационными качествами, которые определяются физико-механическими характеристиками троса. Важнейшими из них являются прочность, гибкость и эластичность.
Прочность троса — способность его выдерживать нагрузки на растяжение. Она зависит от материала, конструкции, способа изготовления и толщины троса. Последняя измеряется в миллиметрах: растительных и синтетических тросов — по длине их окружности, стальных — по диаметру. Прочность является основным критерием оценки любого троса, предназначенного для работы в сильно напряженном состоянии.
Различают разрывную и рабочую прочность троса.
Разрывная прочность троса определяется той наименьшей нагрузкой, при которой он начинает разрушаться. Эта нагрузка R называется разрывным усилием. Его численное значение в ньютонах указано в государственных стандартах и может быть вычислено приближенно по формулам.
Для растительных и синтетических тросов
R=fС2
для стальных тросов
R' = fd2
где f— эмпирический коэффициент;
С — длина окружности сечения троса, мм;
d1 — диаметр троса, мм.
Рабочая прочность троса определяется той наибольшей нагрузкой, при которой он может работать в конкретных условиях
длительное время без нарушения целости отдельных элементов и всего троса. Эта нагрузка называется допустимым усилием. Его значение в ньютонах устанавливается с определенным запасом прочности
P = R/k.
где R —разрывное усилие, Н;
k- коэффициент запаса прочности, выбираемый в зависимости от назначения и условий эксплуатации троса.
Для большинства судовых тросов коэффициент запаса прочности берется равным 6, а в устройствах для подъема людей — не менее 12.
Гибкость троса- способность его изгибаться без нарушения структуры и потери прочности. Чем больше гибкость троса, тем удобнее и безопаснее работать с ним.
Эластичность (упругость) троса - способность его удлиняться при растяжении и принимать первоначальные размеры без остаточных деформаций после снятия нагрузки. Эластичные тросы являются оптимальными в условиях приложения динамических нагрузок.
Для надлежащего ухода за тросами, их правильного хранения и использования на судне важно также знать и учитывать стойкость тросов к воздействиям внешних факторов: воды, температуры, солнечной радиации, химических веществ, микроорганизмов и др. Нормативами и государственными стандартами определены требования к качеству исходных материалов и основные характеристики тросов.
Растительные тросы. Изготавливают растительные тросы из специально обработанных прочных длинных волокон некоторых растений. По способу свивки они могут быть тросовой и кабельной работы.
Изготовление растительного троса (рис. I) начинают со свивки нитей 1 в каболки 2. Из нескольких каболок связывают прядь 3, а несколько прядей, свитых вместе, образуют трос тросовой работы (рисунок 10.9,а). В зависимости от числа прядей тросы бывают трех-, четырех- и многопрядные. Трос с меньшим числом прядей прочнее троса такой же толщины, свитого из большего числа прядей, но уступает ему в гибкости. Трос кабельной работы (рисунок 10.9, 6) получается путем свивки нескольких тросов тросовой работы, которые в структуре такого троса называются стрендями 4. Трос кабельной работы менее прочен, чем трос тросовой работы такой же толщины, но более гибок и эластичен. Чтобы трос не раскручивался и сохранял свою форму, свивку каждого последующего элемента троса делают в сторону, противоположную свивке предыдущего элемента. Обычно волокна свивают в каболки слева направо. Тогда каболки в пряди свивают справа налево, а пряди в трос — снова слева направо. Такой трос называется тросом прямого спуска, или правой свивки (рис. 1, в), а трос с противоположным направлением свивки элементов— тросом обратного спуска, или левой свивки (рисунок 10.9, г).
На судах морского флота наибольшее применение получили пеньковые, манильские и сизальские растительные тросы. Реже используют тросы кокосовые, хлопчатобумажные и льняные.
Пеньковые тросы изготавливают из волокон конопли — пеньки. Существенным недостатком этих тросов является их большая гигроскопичность и подверженность гниению. Для предотвращения гниения пряди троса свивают из просмоленных каболок. Такой трос называется смоленым, а трос, изготовленный из непросмоленных каболок, -бельным. Прочность смоленого троса примерно на 25% ниже прочности бельного троса такой же толщины, а масса на 11 —18% больше. Пеньковые тросы тросовой работы изготавливают бельными и смолеными, а тросы кабельной работы — только смолеными. Последние как более влагостойкие используют преимущественно в качестве швартовных тросов. Бельные тросы имеют серо-зеленоватый цвет, смоленые — от светло- до темно-коричневого. Пеньковые тросы удлиняются без потери прочности на 8-10%.
Рисунок 10.9 - Растительные тросы
Сизальские тросы изготавливают из волокон листьев тропического растения агавы - сизальской пеньки. Они эластичны, как манильские тросы, но уступают им в прочности, гибкости и влагостойкости, в намокшем состоянии становятся хрупкими. Цвет ''этих тросов светло-желтый.
Кокосовые тросы изготавливают из волокон, покрывающих кокосовые орехи. Тросы не тонут в воде, вдвое легче смоленых пеньковых тросов, но обладают меньшей прочностью. Тросы весьма эластичны — при нагрузке на растяжение, близкой к разрывному усилию, они удлиняются на 30—35%.
Хлопчатобумажные тросы используются в основном для хозяйственных нужд. Они недостаточно прочны, недолговечны, весьма гигроскопичны и сильно вытягиваются.
В зависимости от способа изготовления и толщины растительные тросы имеют специальные названия: лини — тросы тросовой работы толщиной до 25 мм и тросы кабельной работы толщиной до 35 мм; перлини—тросы кабельной работы толщиной 101 — 150 мм; кабельтовы — тросы кабельной работы толщиной 151—350 мм; канаты — тросы кабельной работы толщиной более 350 мм.
Лини большой прочности свивают из нескольких каболок высококачественной пеньки. Линь, свитый из низкосортной пеньки, называется шкимушгаром. Он идет на изготовление матов, кранцев и других изделий. Лини, полученные путем сплетения льняных нитей, называются шнурами. Плетеные шнуры гибки и эластичны, не имеют больших наружных изменений и деформаций в результате скручивания.
При расчете разрывного усилия для растительных тросов принимают следующие значения эмпирического коэффициента [см. формулы (1) и (2)]: для манильского — 0,65; для пенькового бельного — 0,6; для пенькового смоленого — 0,5; для сизальского — 0,4.
Синтетические тросы. В зависимости от марки полимера эти тросы подразделяют на полиамидные, полиэфирные и полипропиленовые. К полиамидным относятся тросы, изготовленные из волокон капрона, найлона (нейлона), перлона, силона и других полимеров. Полиэфирные тросы изготавливают из волокон лавсана, ланона, дакрона, диолена, терилена и других полимеров. Материалами для изготовления полипропиленовых тросов служат пленки или мононити полипропилена, типтолена, бустрона, ульстрона и др.
Синтетические тросы имеют большие преимущества перед растительными. Они значительно прочнее и легче последних, более гибки и эластичны, влагостойки, в большинстве своем не теряют прочности при намокании и не подвержены гниению. Такие тросы стойки к растворителям (бензину, спирту, ацетону, скипидару). Полиамидные и полиэфирные тросы сохраняют все свои свойства при изменении температуры воздуха от —40 до -f 60°С, что позволяет использовать их при работе судна в различных климатических условиях.
При эксплуатации синтетических тросов необходимо учитывать их особенности. Полиамидные тросы повреждаются под воздействием солнечной радиации, кислот, олифы, мазута, а полиэфирные — от соприкосновения с концентрированными кислотами н щелочами. Разрывная прочность полипропиленовых тросов снижается при температуре свыше +20оС1 а при отрицательных температурах понижается их гибкость. При трении о поверхности деталей оборудования и в результате трения прядей между собой тросы способны накапливать статическое электричество, которое может вызвать искрообразование и повреждение тросов. Наружные волокна недостаточно стойки к истиранию и могут оплавляться особенно при трении о шероховатые поверхности.
Синтетические тросы очень эластичны. Так, при нагрузке, равной половине разрывного усилия, относительное удлинение плетеных восьмипрядных тросов следующее: полипропиленовых — 21 — 23%, полиэфирных — 23—25%, полиамидных — 35—37%. Такая большая эластичность делает сильно натянутый трос опасным для работающих, так как при разрыве концы его могут нанести им травму. Менее опасны плетеные восьмипрядные тросы, нежели крученые трехпрядные. Кроме того, они более стойки к истиранию, обладают лучшей гибкостью, сохраняют структуру и форму даже при обрыве двух прядей, выдерживая при этом нагрузку, составляющую 75% разрывного усилия. Отсутствие крутящего момента у плетеного троса, находящегося в напряженном состоянии, делает его более удобным в эксплуатации.
Разрывная прочность синтетических тросов зависит от марки полимера (см. таблицу).
Плетеные и крученые капроновые тросы отечественного производства бывают обычными и повышенной плотности. Разрывная прочность последних выше разрывной прочности обычных. Значения разрывного усилия для обычных плетеных восьмипрядных тросов следующие:
Длина окружности, мм .... 84 90 100 106 115 124
Разрывное усилие, кН, не менее . 100 114,5 143 155 ' 180 204
Значения разрывного усилия для плетеных восьмипрядных тросов повышенной плотности следующие:
Длина- окружности, мм .... 65 71 77 82 92 101 105 116
Разрывное усилие, кН, не менее . 72 85 100 114,5 143 169 180 218
Стальные тросы. Их изготавливают обычно из оцинкованной проволоки. По качеству оцинковки проволоку подразделяют на три группы с индексами ЛС (для легких условий работы), СС (для средних условий работы) и ЖС (для жестких условий работы).
По конструкции тросы бывают одинарной, двойной и тройной свивки. Трос одинарной свивки, называемый также спиральным (рисунок 10.10 ,а), состоит из одной пряди, у которой проволоки свиты по спирали в один или несколько рядов вокруг центральной проволоки. Несколько прядей, свитых вокруг одного сердечника, образуют трос двойной свивки (рисунок 10.10,б). Это трос тросовой работы. Трос тройной свивки (рисунок 10.10,в) получают путем свивки нескольких тросов двойной свивки. Он представляет собой трос кабельной работы. .
В зависимости от способа свивки проволок в многорядной пряди различают тросы с линейным и точечным касанием проволок. В тросе с линейным касанием проволоки каждого последующего ряда свиваются вокруг центрального сердечника в ту же сторону, что и проволоки предыдущего ряда. В этом случае ряды проволок соприкасаются по всей длине проволоки. Такой тип троса обозначается буквами ЛК.
При свивании проволок каждого последующего ряда в сторону, противоположную свивке проволок предыдущего ряда, получается трос с точечным касанием проволок, обозначаемый буквами ТК-
По направлению свивки проволок в пряди и прядей в трос различают тросы односторонней, крестовой и комбинированной свивки.
Трос односторонней свивки (правой или левой) получают свивкой прядей в том же направлении, в каком свиты проволоки в пряди. При свивке прядей в трос в направлении, противоположном свивке проволок в пряди, получается трос крестовой свивки. Если же первая половина прядей имеет свивку в одну сторону, а вторая половина - в противоположную, такой трос называется тросом комбинированной свивки.
В качестве сердечников для тросов применяются стальная проволока, промасленные пеньковые и другие растительные тросы тросовой работы, синтетические и асбестовые материалы. Сердечник обеспечивает плотность троса и сохранение его формы на изгибах при большом натяжении, делает трос более мягким и гибким. Промасленные сердечники, кроме того, предохраняют внутренние проволоки от ржавления, а асбестовые - от преждевременного изнашивания тросов, используемых в условиях высоких температур. Кроме центрального сердечника из различных материалов, многие типы тросов имеют сердечники из органических материалов внутри каждой пряди.
Рисунок 10.10 - Стальные тросы
По степени гибкости тросы подразделяют на жесткие и гибкие. Жесткими называют тросы одинарной свивки, изготовленные из проволок с высоким пределом прочности, свитых в несколько рядов вокруг проволочного сердечника, а также тросы тросовой работы с одним сердечником из органического материала. Гибкими называют тросы тросовой работы, каждая прядь которых свита из тонких проволок н имеет сердечник из органического материала, а также свитые из таких тросов тросы кабельной работы.
Комбинированные тросы. Их применяют как буксирные и в качестве швартовов. Для их изготовления используют различные полимеры (в сочетании), а также синтетические и стальные тросы с волокнами растительного происхождения. Факторами, определяющими выбор материалов для изготовления комбинированных тросов, являются эксплуатационные характеристики, которым они должны соответствовать.
Для условного обозначения конструкции, структуры и характеристики стальных тросов применяют буквенную и цифровую системы. Число прядей в тросе указывается цифрой, а конструкция пряди - суммой цифр, из которых первая характеризует сердечник, вторая указывает число проволок в первом ряду, третья - число проволок во втором ряду и т. д. Например, запись для двухрядной пряди (1+6+12) означает, что прядь имеет сердечник из одной (центральной) проволоки, в первом ряду пряди 6 проволок, во втором - 12. У прядей с органическим сердечником вместо цифры 1 ставят цифру 0. Запись за скоб кой +1 ОС означает, что многопрядный трос имеет общий органический сердечник. Так, для многопрядного троса запись 6X24 (0 + 9+15)+ ЮС означает: трос шестипрядный, каждая прядь имеет 24 проволоки, свитые вокруг органического сердечника в 2 ряда по 9 и !5 проволок соответственно, а пряди свиты вокруг общего органического сердечника.
Блоки, тали.
Блоки используют для изменения направления тяги при подъеме и перемещении небольших тяжестей или при обтягивании снасти, а также для основывания талей. Блок состоит из деревянного, металлического или литого пластмассового корпуса, внутри которого на оси, называемой нагелем, насажены свободно один или несколько металлических шкивов. Блоки бывают одно-, двух-, трех- и многошкивные. Корпус блока имеет перегородки, которыми один шкив отделен от другого. Наружные поверхности крайних перегородок называются щеками.
Простейшим по конструкции является одношкивный блок. Трос, пропущенный через такой блок, закрепленный неподвижно, называется горденем (рисунок 10.11). Гордень позволяет при подъеме и перемещении груза изменять направление тяги, но не дает выигрыша в силе, поэтому его используют для подъема небольших тяжестей. Одношкивные блоки с пропущенными через них фалами служат для подъема флагов и вымпелов, сигнальных огней и знаков.
Деревянные и пластмассовые блоки применяют только при работе с растительными и синтетическими тросами. В большинстве судовых устройств используются металлические блоки.
Двухшкивный металлический блок (рисунок 10.11, а) состоит из корпуса 3, двух стальных или чугунных шкивов 4, втулки 5 с канавкой для смазки или с подшипником, нагеля 6, оковки 7, крепежных болтов / и подвески 2.
Для оснастки блока трос должен быть пропущен между щеками блока и заложен в кип шкива. Оснастка простого блока неудобна, так как надо продевать трос с конца. Поэтому на судах применяют одношкивные блоки с откидной щекой - канифас- блоки (рисунок 10.11,б). Откидная щека позволяет заводить в такой блок середину троса.
Чтобы не допустить чрезмерного изгиба троса, проходящего через шкив блока, размеры блока должны соответствовать толщине троса. Диаметр шкива металлического блока должен быть не менее 10 -15 диаметров стального троса, а деревянного - в 2 раза больше длины окружности растительного или синтетического троса.
Рисунок 10.11 - Блоки
Блоки надо периодически разбирать, очищать от грязи и ржавчины, смазывать трущиеся части. При обнаружении трещин, значительного износа нагеля или шкива блок следует заменить. Блоки, не находящиеся в эксплуатации, нужно тщательно смазать и хранить в сухом помещении в подвешенном состоянии.
Тали - устройства, позволяющие не только изменить направление тяги, но и получить выигрыш в силе при подъеме и перемещении тяжестей, при обтягивании снастей и в других случаях. По конструкции тали подразделяют на обыкновенные и механические.
Обыкновенные тали состоят из двух блоков, через шкивы которых пропущен трос, называемый лопарем. Один конец лопаря, закрепляемый за блок, называется коренным, другой, выходящий из блока, к которому прилагается внешнее тяговое усилие, - ходовым. Один блок талей, неподвижный, через подвеску закрепляется на месте. Другой блок называется подвижным, так как при работе он поднимается вместе с грузом или перемещается по направлению обтягивания снастей. По числу шкивов в обоих блоках тали разделяют на двух-, трех-, четырех- и многошкивные.
Простейшими являются двухшкивные тали, основанные лопарем между двумя одношкивными блоками. Такие тали могут быть основаны двояко: ходовой конец лопаря сходит с неподвижного (рисунок10.12,а) или с подвижного (рисунок 10.,б) блока. Рассмотрим, какой выигрыш в силе при подъеме груза массой т будет в том и в другом случаях.
В первом случае масса груза распределяется на две ветви лопаря, выходящие из нижнего, подвижного, блока, а во втором - на все три ветви. Следовательно, для удержания на весу груза массой т к ходовым концам лопарей в первом и втором случаях надо прилагать усилия F и Fi, равные соответственно 1/2 т и 1/3 т. Значит, выигрыш в силе равен числу нагруженных ветвей лопаря или общему числу шкивов в обоих блоках в первом случае и общему числу шкивов плюс единица во втором.
Для подъема груза к ходовому концу лопаря требуется приложить дополнительное усилие на преодоление сил трения, возникающих в талях. Практически считают, что усилие на преодоление сил трения в каждом шкиве талей, основанных растительным или гибким стальным тросом, составляет соответственно 10 и 5 % массы поднимаемого груза.
На судах применяются обыкновенные тали различных конструкций и грузоподъемности. Для обтягивания снастей используют трехшкивные хват-тали (рис. б,а).
Наряду с ними применяют тали, основанные между двумя блоками с одинаковым числом шкивов,- гинцы. В вооружение тяжеловесных стрел входят многошкивные тали, имеющие блоки со шкивами на шарикоподшипниках,- гини.
Способы основывания талей зависят от числа шкивов в блоках (рисунок 10.13). Основывают всегда коренным концом лопаря по часовой стрелке при тросах правого спуска и против часовой стрелки при тросах левого спуска. Основывают тали на палубе, положив один блок напротив другого на некотором расстоянии подвесками наружу. Для основывания двух- шкивных талей (рисунок 10.13, а) за неподвижный блок принимают тот, который имеет приспособление для крепления коренного конца лопаря. Коренной конец проводят через шкив неподвижного блока, затем через шкив подвижного и к крепят к неподвижному блоку.
Рисунок 10.12 - Обыкновенные двухшкивные тали
Рисунок 10.13 - Обыкновенные многошкивные тали
При основывании трехшкивных талей (рисунок 10.13, б) за неподвижный блок принимают двухшкивный, а за подвижный — одношкивный. Коренной конец проводят через нижний (ближайший к палубе) шкив двухшкивного блока, через шкив одношкивного, затем через верхний шкив двухшкивного и кренят к одношкивному блоку.
При основывании четырехшкивных талей (рисунок 10.13, в), состоящих из двух двухшкивных блоков, коренной конец проводят последовательно сначала через нижние шкивы неподвижного и подвижного блоков, затем через верхние шкивы этих блоков, после чего коренной конец подводят к неподвижному блоку и закрепляют на нем.
Основывание между двумя трехшкивными блоками шестишкивных гиней осуществляют коренным концом лопаря по схеме: средний шкив неподвижного блока — нижний шкив подвижного — нижний шкив неподвижного — средний шкив подвижного — верхний шкив неподвижного — верхний шкив подвижного — к месту крепления на неподвижном блоке. Такая схема проводки коренного конца лопаря предупреждает перекос блоков во время подъема груза.
Во всех случаях после проводки коренного конца лопаря через все шкивы обоих блоков его заделывают огоном с коушем, которым он присоединяется к обушку на соответствующем блоке.
Механические тали позволяют получать многократный выигрыш в силе, возможность плавно поднимать груз и держать его автоматически застопоренным в любом положении.
Широкое применение на судах нашли механические дифференциальные тали (рис. 8). В подвеске таких талей помещена обойма неподвижного блока, который состоит из двух жестко соединенных шкивов разного диаметра с соотношением диаметров 7:8 или 11:12. Подвеска с блоком прикреплена к неподвижной опоре или к траверсе тележки, передвигаемой по подвешенному рельсу. Нижний (подвижный) одношкивный блок также помещен в обойму, имеющую гак для подвешивания груза. Замкнутая рабочая цепь охватывает последовательно малый шкив неподвижного блока, шкив подвижного и большой шкив неподвижного блоков. Подъем груза обеспечивается поворотом большого шкива неподвижного блока путем приложения тягового усилия к ветви рабочей цепи, сбегающей с этого шкива.
При подъеме тяжестей дифференциальными талями получают 16-кратный (при соотношении диаметров шкивов неподвижного блока 7:8) и 24-кратный (при соотношении этих диаметров 11:12) теоретический (без учета трения) выигрыш в силе.
Обыкновенные тали, не находящиеся в эксплуатации, хранят в сухом проветриваемом помещении в подвешенном состоянии. Все трущиеся части блоков хорошо смазывают. После окончания работ с переносными талями их аккуратно складывают, не допуская спутывания лопаря. При работе с обыкновенными талями стараются избегать резких рывков, которые могут привести к обрыву лопаря или повреждению блоков. Если при осмотре блоков обнаружится значительный износ нагелей, гаков, скоб или обухов, такие блоки заменяют и основывают тали
заново.
Механические тали содержат в чистоте, регулярно смазывают трущиеся части следят за их исправностью.
