Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
движки / FADEC 2.rtf
Скачиваний:
104
Добавлен:
28.05.2020
Размер:
30.66 Mб
Скачать

2. Газодинамические схемы газотурбинных двигателей

Сложным требованиям, предъявляемым к условиям функционирования сверхзвуковых многорежимных самолетов, в наибольшей степени удовлетворяют турбореактивные (ТРД) и двухконтурные турбореактивные двигатели (ТРДД). Общим у этих двигателей является характер формирования свободной энергии, различие –в характере ее использования.

У одноконтурного двигателя (рис. 4) свободная энергия, которой располагает рабочее тело за турбиной, непосредственно преобразуется в кинетическую энергию вытекающей струи. У двухконтурного двигателя в кинетическую энергию вытекающей струи преобразуется лишь часть свободной энергии. Оставшаяся часть свободной энергии идет на повышение кинетической энергии дополнительной массы воздуха. Передача энергии дополнительной массе воздуха осуществляется турбиной и вентилятором.

Использование части свободной энергии для ускорения дополнительной массы воздуха при определенных значениях параметров рабочего процесса, а следовательно, и при определенном часовом расходе топлива позволяет повысить тягу двигателя и снизить удельный расход топлива .

Пусть расход воздуха ТРД будет а скорость истечения газа . У двухконтурного двигателя во внутреннем контуре расход воздуха тот же, что и у одноконтурного двигателя , а скорость истечения газа ; в наружном контуре соответственно и (см. рис. 4).

Будем полагать, что расход воздуха и скорость истечения газа одноконтурного двигателя , которая характеризует уровень свободной энергии, при каждом значении скорости полета имеют определенные значения.

Условия баланса мощности потоков в ТРД и ТРДД при отсутствии потерь в элементах газовоздушного тракта, обеспечивающие повышение кинетической энергии дополнительной массы воздуха, можно представить выражениями

Рис. 4. Двухконтурный и одноконтурный двигатели с единым турбокомпрессорным контуром [3]

(1)

(2)

В пояснение к последнему выражению заметим, что часть свободной энергии, передаваемая во внешний контур, повышает энергию потока от уровня которым обладает набегающий поток, до уровня .

Приравнивая правые части выражений (1) и (2), С учетом обозначений получим

, , . (3)

Тяга двухконтурного двигателя определяется выражением

(4)

Если выражение (3) разрешить относительно и результат подставить в выражение (4), то получим

. (5)

Максимальная тяга двигателя при данных значениях и т достигается при , что следует из решения уравнения .

Выражение (5) при приобретает вид

(6)

Наиболее простым выражение для тяги двигателя становится при

Это выражение показывает, что повышение степени двухконтурности приводит к монотонному возрастанию тяги двигателя. И, в частности, можно видеть, что переход от одноконтурного двигателя (т = 0) к двухконтурному двигателю с т = 3 сопровождается увеличением тяги в два раза. А поскольку расход топлива в газогенераторе остается при этом неизменным, то удельный расход топлива уменьшается также в два раза. Но удельная тяга двухконтурного двигателя ниже, чем у одноконтурного. При V = 0 удельная тяга определяется выражением

которое свидетельствует, что при увеличении т удельная тяга уменьшается.

Одним из признаков различия схем двухконтурных двигателей является характер взаимодействия потоков внутреннего и наружного контуров.

Двухконтурный двигатель, у которого поток газа внутреннего контура смешивается с потоком воздуха за вентилятором – потоком наружного контура, – называется двухконтурным двигателем со смешением потоков.

Двухконтурный двигатель, у которого указанные потоки вытекают из двигателя раздельно, называется двухконтурным двигателем с раздельными контурами.

Соседние файлы в папке движки