- •Приднестровский государственный универсистет им. Т.Г. Шевченко
- •Математическое моделирование в экономике
- •Содержание
- •Предисловие
- •Введение
- •Лабораторная работа №1
- •Теоретический раздел Методы линейного программирования
- •Общая задача линейного программирования (злп)
- •Постановка злп
- •Построение экономико-математической модели задачи
- •Переход от стандартной записи задачи к канонической
- •Примеры типовых задач
- •Надстройка «Solver» (Поиск решения)
- •Параметры средства Поиск решения
- •Отчеты поиска решения
- •Математический редактор Mathcad
- •Общие задания
- •Индивидуальные задания
- •Контрольные вопросы:
- •Лабораторная работа №2
- •Теоретический раздел Симплексный метод решения злп
- •Алгоритм симплексного метода
- •Примеры типовых задач
- •Симплексная таблица
- •Практический раздел
- •Общие задания
- •Контрольные вопросы
- •Лабораторная работа №3
- •Теоретический раздел Взаимодвойственные злп
- •Построение двойственной задачи
- •Правила построения двойственных задач
- •Теоремы двойственности
- •Соотношение переменных прямой и двойственной задач
- •Пример типовой задачи
- •Практический раздел
- •Общие задания
- •Контрольные вопросы
- •Лабораторная работа №4
- •Теоретический раздел Транспортная задача
- •Построение экономико-математической модели задачи
- •Построение опорного плана
- •Метод наименьшей стоимости (тарифов)
- •Метод северо-западного угла (диагональный)
- •Получение оптимального плана. Метод потенциалов
- •Алгоритм оценки оптимальности плана методом потенциалов
- •Примеры типовых задач
- •Практический раздел
- •Общие задания
- •Индивидуальные задания
- •Контрольные вопросы
- •Лабораторная работа №5
- •Теоретический раздел Теория игр
- •Основные понятия теории игр
- •Постановка игровых задач, методы и модели их решения
- •Принцип минимакса
- •Характерные оценки
- •Решение игр в смешанных стратегиях
- •Метод линейного программирования
- •Примеры типовых задач
- •Производственные стратегии фирмы
- •Платежная матрица
- •Практический раздел
- •Общие задания
- •Индивидуальные задания
- •Контрольные вопросы
- •Лабораторная работа №6
- •Теоретический раздел Инвестиционный портфель ценных бумаг
- •Оптимальный портфель инвестиций
- •Доходность портфеля ценных бумаг
- •Измерение риска портфеля ценных бумаг
- •Оптимизация портфеля ценных бумаг
- •Построение экономико-математической модели задачи
- •Практический раздел Оптимальный портфель инвестиций с максимальным доходом
- •Проценты доходности ценных бумаг и рынка
- •Оптимальный портфель инвестиций с минимальным риском
- •Общие задания
- •Индивидуальные задания
- •Контрольные вопросы
- •Лабораторная работа №7
- •Теоретический раздел Нелинейные модели
- •Задача управления запасами
- •Постановка задачи
- •Основные понятия и определения
- •Основная модель управления запасами. Модель Уилсона
- •Входные:
- •Выходные:
- •Построение экономико-математической модели задачи
- •Модель планирования экономичного размера партии
- •Построение экономико-математической модели задачи
- •Практический раздел
- •Общие задания
- •Индивидуальные задания
- •Контрольные вопросы
- •Лабораторная работа №8
- •Теоретический раздел Теория массового обслуживания
- •Определение характеристик и моделирование систем массового обслуживания Потоки событий
- •Простейшая одноканальная модель
- •Примеры типовых задач Анализ входного потока заявок
- •Анализ потока обслуживания заявок
- •Анализ одноканальной смо
- •Практический раздел
- •Общие задания
- •Индивидуальные задания
- •Контрольные вопросы
- •Список литературы
- •Приложение
- •Математическое моделирование в экономике
Параметры средства Поиск решения
Максимальное время – служит для ограничения времени, отпущенного на поиск решения задачи. В этом поле можно ввести время в секундах, не превышающее 32 767 (примерно девять часов); значение 100, используемое по умолчанию, вполне приемлемо для решения большинства простых задач (см. рис. 1.4).
Предельное число итераций – управляет временем решения задачи путем ограничения числа вычислительных циклов (итераций).
Относительная погрешность – определяет точность вычислений. Чем меньше значение этого параметра, тем выше точность вычислений.
Допустимое отклонение – предназначен для задания допуска на отклонение от оптимального решения, если множество значений влияющей ячейки ограничено множеством целых чисел. Чем больше значение допуска, тем меньше времени требуется на поиск решения.
Сходимость – применяется только к нелинейным задачам. Когда относительное изменение значения в целевой ячейке за последние пять итераций становится меньше числа, указанного в поле Сходимость, поиск прекращается.
Линейная модель – служит для ускорения поиска решения путем применения к задаче оптимизации линейной модели. Нелинейные модели предполагают использование нелинейных функций, фактора роста и экспоненциального сглаживания, что замедляет вычисления.
Неотрицательные значения – позволяет установить нулевую нижнюю границу для тех влияющих ячеек, для которых не было задано соответствующее ограничение в диалоговом окне Добавить ограничение.
Автоматическое масштабирование – используется, когда числа в изменяемых ячейках и в целевой ячейке существенно различаются.
Показывать результаты итераций – приостанавливает поиск решения для просмотра результатов отдельных итераций.
Загрузить модель – после щелчка на этой кнопке отрывается одноименное диалоговое окно, в котором можно ввести ссылку на диапазон ячеек, содержащих модель оптимизации.
Сохранить модель – служит для отображения на экране одноименного диалогового окна, в котором можно ввести ссылку на диапазон ячеек, предназначенный для хранения модели оптимизации.
Оценка линейная – используется для работы с линейной моделью.
Оценка квадратичная – используется для работы с нелинейной моделью.
Разности прямые – используется в большинстве задач, где скорость изменения ограничений относительно невысока. Увеличивает скорость работы средства Поиск решения.
Разности центральные – используется для функций, имеющих разрывную производную. Данный способ требует больше вычислений, однако его применение может быть оправданным, если выдано сообщение о том, что получить более точное решение не удается.
Метод поиска Ньютона – требует больше памяти, но выполняет меньше итераций, чем в методе сопряженных градиентов.
Метод поиска сопряженных градиентов – реализует метод сопряженных градиентов, для которого требуется меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно большая и необходимо экономить память или если итерации дают слишком малое отличие в последовательных приближениях.
