
- •1. Медицинская микробиология. Предмет изучения, цели и задачи
- •2. Санитарная микробиология. Предмет изучения, цели и задачи.
- •3. Клиническая микробиология: цели и задачи
- •4. Методы исследования в микробиологии. Их диагностическая значимость
- •5. Биотехнологии. Методы, цели и задачи
- •6. Систематика и номенклатура микроорганизмов. Принципы классификации бактерий. Основные формы бактерий. Размеры
- •7. Световой микроскоп, микроскопия с иммерсией. Разрешающая способность. Применение. Принципы окраски по Граму. Этапы приготовления микропрепарата.
- •8. Характерные биологические свойства прокариотов и эукариотов. Структура бактериальной клетки. Обязательные структурные элементы бактериальной клетки, их роль.
- •9. Необязательные структурные элементы- включения, жгутики, капсула, пили, споры. Их функции. Примеры бактерий. Методы выявления.
- •11. Влияние физических факторов на микроорганизмы- ультразвук, температура, высушивание, лучистая энергия. Лиофильное высушивание.
- •13. Выделение чистой культуры аэробов. Биологических методов создания анаэробиоза.
- •14. Механизмы питания прокариотов. Типы питания бактерий. Классификация питательных сред. Примеры.
- •15. Простые и сложные методы окраски микроорганизмов. Дифференциальные методы окраски, практическое применение. Примеры.
- •16. Рост, размножение, фазы развития микробной популяции. Культуральные свойства бактерий.
- •17. Пигменты (основные представители пигментообразующих бактерий) их функции. Примеры.
- •18. Основные принципы культивирования микробов. Методы изучения ферментов бактерий. Практическое использование
- •19. Понятие чистой культуры, штамме, биоваре, сероваре, фаговаре, клоне микробов
- •20. Антигены микроорганизмов: локализация, химическая природа.
- •21. Получение микробных антигенов, практическое применение.
- •22. Антитела: определение, физико-химические свойства антител. Аффинность, авидность антител.
- •23. Бактериофаги. Биологические свойства. Вирулентный бактериофаг. Практическое применение.
- •24. Бактериофаги. Биологические свойства. Умеренный бактериофаг. Лизогения. Конверсия фагом.
- •25. Виды лекарственной устойчивости: основные механизмы, пути распространения. Примеры.
- •26. Химиотерапевтические препараты: определение, основные химические группы, примеры препаратов из каждой группы.
- •27. Механизм действия антибиотиков, спектр, примеры.
- •28. Методы определения чувствительности микроорганизмов к антибиотикам.
- •30. Нормальная микрофлора тела человека: определение, формирование, значение. Синдром раздраженного кишечника: понятие, причина, принцип микробиологической диагностики.
- •31. Представители микробиоценозов основных биотопов: конъюнктива глаза, слизистая оболочка носа, носоглотка
- •32. Представители микробиоценозов основных биотопов: ротовая полость, пищевод, желудок, толстый кишечник, органы мочеполовой системы
- •33. Инфекция: понятие, условия возникновения, динамика развития, инфекция, исходы
- •34. Микробоносительство: определение, виды, примеры. Диагностика микробоносительства
- •35. Понятия: патогенность, вирулентность микроорганизмов. Классификация микроорганизмов по патогенности, примеры
- •36. Понятие патогенность, вирулентность микроорганизмов. Факторы, влияющие на вирулентность возбудителей. Факторы патогенности бактерий, повреждающие организм хозяина, примеры.
- •37. Аттенуированные штаммы: методы получения, использование
- •38. Факторы вирулентности. Микробные токсины и их свойства. Количественное определение вирулентности. Аттенуация
- •39. Токсинемия, примеры токсинемических инфекций. Принцип специфической терапии.
- •40.Понятие инфицирующая доза. Входные ворота инфекции, Примеры. Распространение возбудителей в организме. Динамика развития и периоды инфекционного процесса.
- •41. Манифестные и субклинические формы инфекции. Микробоносительство: определение, виды, примеры. Множественная инфекция
- •42. Принципы классификации вирусов.
- •43.Морфология и физиология вирусов, отличительные особенности. Структура вириона
- •44. Типы взаимодействия вируса с клеткой.
- •45. Методы культивирования вирусов, принципы их индикации и идентификации
- •46. Формы вирусной инфекции
- •47. Микробиологические методы исследования воздуха лпу
- •48. Микробиологические методы исследования почвы
- •49. Вода как фактор распространения возбудителей инфекций. Микробиологические критерии качества питьевой воды
- •50. Санитарно-микробиологическое исследование молока и молочных продуктов. Критерии микробиологической безопасности
- •51.Санитарно_микробиологическое исследование мяса и мясных продуктов. Критерии микробиологической безопасности
- •52.Санитарно-микробиологическое исследование рыбы. Критерии микробиологической безопасности. Контроль качества свежей, охлажденной, мороженой рыбы и морских беспозвоночных
- •53. Санитарно-показательные мо: понятие, виды, требования, предъявляемые к санитарно-показательным мо
- •55. Внутрибольничные инфекции. Роль макроорганизма и внешней среды в возникновении госпитальных штаммов и госпитальной инфекции. Меры профилактики.
- •56.Госпитальные штаммы: понятие, характерные признаки, условия формирования
- •57. Спектр возбудителей внутрибольничных инфекций.
- •58.Объекты санитарно-микробиологического исследования на стерильность. Методы отбора проб и их исследование. Интерпретация результатов санитарно-микробиологических исследований на стерильность
- •59.Стерилизация.Методы стерилизации — основные режимы, объекты стерилизации, методы контроля. Преимущества и недостатки
- •60. Дезинфекция. Химические группы дезинфицирующих веществ, механизм их действия на микроорганизмы.
37. Аттенуированные штаммы: методы получения, использование
Аттенуированные штаммы - варианты патогенных микроорганизмов, полностью лишенные вирулентности или сохранившие остаточную вирулентность для одного из хозяев.
Ослабление вирулентности происходит при обработке бактериальной популяции гомологичной иммунной сывороткой. Однако в условиях организма механизм действия может быть связан не с изменением вирулентности бактерий, а с селекцией устойчивых маловирулентных клеток, предсуществующих в гетерогенной бактериальной популяции. При последующем культивировании восстановления вирулентности полученной бактериальной культуры может не произойти если все вирулентные особи были нейтрализованы гомологичной антисывороткой. Аналогичным образом происходит селекция авирулентных мутантов при воздействии на бактериальную популяцию соответствующих активных факторов. Так, например, авирулентный штамм БЦЖ был селекционирован при многократных пересевах в течение многих лет шрулентной культуры микобактерий туберкулеза на картофельно-глицериновой среде с бычьей желчью.
Методы ослабления вирулентности патогенных микроорганизмов имеют большое практическое значение для получения вакцинных штаммов, т.е. таких авирулентных микробных культур, из которых эолучают живые вакцины для специфической профилактики инфекционных заболеваний. Некоторые из стабильных аттенуированных штаммов. используют для изготовления живых вакцин, напр., туляремийной, сибиреязвенной, чумной, сыпнотифозной и др. А.ш. изолируют из природных популяций или получают в результате искусственного воздействия мутагенами.
38. Факторы вирулентности. Микробные токсины и их свойства. Количественное определение вирулентности. Аттенуация
Вирулентность микроорганизмов обусловлена их способностью к адгезии (прилипанию), колонизации (размножению), инвазии (проникновению в ткани, клетки макроорганизма) и подавлению фагоцитоза.
1) адгезины (обеспечивают адгезию) – специфические химические группировки на поверхности микробов, которые как "ключ к замку" соответствуют рецепторам чувствительных клеток и отвечают за специфическое прилипание возбудителя к клеткам макроорганизма;
2) капсула – защита против фагоцитоза и антител; бактерии, окруженные капсулой, более устойчивы к действию защитных сил макроорганизма и вызывают более тяжелое течение инфекции (возбудители сибирской язвы, чумы, пневмококки);
3) поверхностонорасположенные вещества капсулы или клеточной стенки различной природы (поверхностные антигены): протеин А стафилококка, протеин М стрептококка, Vi-антиген брюшнотифозных палочек, липопротеиды грам «-» бактерий; они выполняют функции подавления иммунитета и неспецифических защитных факторов;
4) ферменты агрессии: протеазы, разрушающие антитела; коагулаза, свертывающая плазму крови; фибринолизин, растворяющий сгустки фибрина; лецитиназа, разрушающая лецетин мембран; коллагеназа, разрушающая коллаген; гиалуронидаза, разрушающая гиалуроновую кислоту межклеточного вещества соединительной ткани; нейраминидаза, разрушающая нейраминовую кислоту. Гиалуронидаза, расщепляя гиалуроновую кислоту, повышает проницаемость слизистых оболочек и соединительной ткани;
Адгезия — способность адсорбироваться на определенных, чувствительных к данному микробу клетках организма хозяина. Она обусловлена, с одной стороны, поверхностными структурами микробной клетки (пили и пр.), с другой — наличием рецепторов клетки макроорганизма, способных вступать в соединение с микробной клеткой.
Колонизация может быть на поверхности клеток, к которым прилипли микробы (например, холерные вибрионы размножаются на энтероцитах), или внутри клеток, в которые проникают прилипшие микробы (например, дизентерийные палочки размножаются в клетках толстого отдела кишки).
Инвазивность связана со способностью микробов продуцировать ферменты, нарушающие (повышающие) проницаемость соединительной и других тканей. К таким ферментам относятся: а) гиалуронидаза (фактор распространения), которая разрушает гиалуроновую кислоту соединительной ткани и тем самым способствует проникновению микробов в ткани; б) нейраминидаза, отщепляющая нейраминовую кислоту от гликопротеидов, гликолипидов, полисахаридов, входящих в состав разных тканей, и таким образом повышающая их проницаемость.
Подавление фагоцитоза осуществляют капсулы бактерий. Вещества, входящие в состав капсул различных микроорганизмов, неодинаковы и их функции тоже различны. Так, полипептид капсул возбудителя сибирской язвы предохраняет его от захвата фагоцитами; полисахарид синегнойной палочки угнетает и захват, и внутриклеточное переваривание бактерий.
Кроме перечисленных факторов, микробы защищаются от фагоцитоза некоторыми ферментами. Например, коагулаза стафилококков способствует свертыванию плазмы, что приводит к образованию защитного «чехла» вокруг микробной клетки; фибринолизин растворяет фибрин, способствуя этим распространению микробов.
Особое значение в вирулентности имеет способность микроорганизмов синтезировать токсины (яды). Токсины, образуемые микроорганизмами, делят на две группы — экзотоксины и эндотоксины.
Экзотоксины являются продуктами метаболизма микробов, секретируемыми в окружающую среду. Они имеют белковое происхождение, что обусловливает их малую устойчивость к внешним воздействиям. Исключение составляют нейротоксин палочки ботулизма, энтеротоксины стафилококка, холерного вибриона, которые выдерживают кратковременное кипячение.
Микроорганизмы, образующие экзотоксин, обычно локализуются в месте проникновения (во входных воротах), а продуцируемый ими экзотоксин циркулирует в макроорганизме, например, столбнячный, дифтерийный и др. Экзотоксины характеризуются высокой токсичностью и выраженной специфичностью — органотропностью. Каждый вид токсина поражает определенные органы или ткани. Например, столбнячный токсин поражает нервную систему, а дифтерийный токсин — мышцы сердца и т. д. По своей биологической активности токсины неодинаковы: некоторые из них полностью определяют клиническую картину заболевания, например, столбнячный, дифтерийный, ботулинический токсины. Другие принимают более ограниченное участие в инфекционном процессе, вызывают нетипичные по клиническим проявлениям реакции, например, гемолитические токсины стафилококков, кишечной палочки и др. Экзотоксины диффундируют в окружающую среду. Их получают, засевая токсигенную культуру в жидкую питательную среду и выращивая ее в условиях максимального накопления токсина. После фильтрации через бактериальные фильтры получают фильтрат, содержащий экзотоксин. В настоящее время ряд экзотоксинов получены в чистом виде и хорошо изучены. Очищенные токсины обладают более высокой токсичностью. Токсическое действие экзотоксинов снимается, если блокировать активный центр яда, воздействуя на него химическими и физическими факторами. При действии 0,4% формалина, выдерживании в условиях 39—40 °С температуры в течение 3—4 нед экзотоксины утрачивают токсические свойства, но сохраняют антигенные. Такие препараты готовят как вакцинные и называют анатоксинами.
Эндотоксины — липополисахаридопротеиновый комплекс, тесно связанный с клеткой микроорганизма. Они не специфичны. Клиническая картина, вызываемая эндотоксинами разных микроорганизмов, однотипна: реакция организма сопровождается обычно общими явлениями интоксикации — лихорадкой, головной болью и т. д.
Тесная связь эндотоксина с клетками микроорганизма обусловливает его устойчивость к температурному и другим внешним факторам. Для получения эндотоксина необходимо разрушить клетку микроорганизма.
Количественное определение вирулентности.
Для характеристики вирулентности пользуются количественными показателями, определяющими способность исследуемой микробной культуры вызывать гибель искусственно зараженных ею подопытных животных. Изучение вирулентности бывает сопряжено с рядом трудностей, так как она определяется не только комплексом культурно-морфологических, токсигенных и биологических свойств микроба, но и резистентностью микроорганизма, подверженной большим колебаниям в связи с видом, возрастом животных, режимом их питания, температурой внешней среды, а также способом заражения, принятым в опыте. Поэтому при установлении вирулентности микроба очень важно вести исследование, точно соблюдая стандартность всех условий опыта.
Для определения вирулентности микробных культур чаще всего используют белых мышей. В том случае, когда белые мыши невосприимчивы к исследуемому возбудителю заболевания, пользуются другими видами животных: крысами, морскими свинками или кроликами.
Для определения вирулентности применяют молодую культуру микроба, так как старые культуры содержат большое количество мертвых клеток.
Культуру микроба для заражения выращивают на мясопептонном агаре или другой плотной питательной среде, так как бульон, представляя собой сложный белковый субстрат, небезразличен для животного организма и может извращать результаты опыта. Исследуемую культуру микроба, выращенную на скошенном мясопептонном агаре, смывают изотоническим раствором хлорида натрия и стандартизуют по оптическому стандарту так, чтобы в 1 мл этого раствора содержалось определенное количество микробных тел. В зависимости от вида культуры, патогенности ее для животных, взятых в опыт, а также от цели и задач исследования количество микробных тел, содержащееся в 1 мл взвеси, может колебаться от единиц до миллиардов. В тех случаях, когда по каким-либо причинам получить агаровую культуру невозможно, пользуются суточной бульонной культурой. Для определения минимальной летальной дозы из бульонной культуры готовят ряд последовательных десятикратных разведений: 1:10, 1:100, 1:1000, 1:10000, 1:100000 и т.д.
Исследуемую взвесь бактерий вводят различными способами: внутривенно, внутрибрюшинно, внутримышечно, подкожно, интраназально—в зависимости от целей и задач исследования.
Отстандартизованную взвесь микробов в изотоническом растворе хлорида натрия, а также разведения бульонной культуры готовят с таким расчетом, чтобы различные дозы микроба, используемые в опыте, содержались в одинаковых объемах жидкости.
Каждую дозу культуры вводят одновременно нескольким животным. При определении минимальной смертельной дозы учитывают и отмечают в протоколе опыта следующие данные:
-
количество микробов, введенных в организм животного;
-
способ их введения;
-
масса тела зараженного животного;
-
сроки гибели после заражения.
Степень вирулентности чаще всего характеризуют тремя следующими показателями:
-
Минимальная смертельная доза Dlm (Dosis letalis minima), т.e. наименьшая доза микробов, которая при определенном способе заражения, в определенных условиях опыта вызывает гибель около 95% подопытных животных.
-
Наименьшая безусловно смертельная доза Dll (Dosis lerie letalis) — наименьшая доза микробов, являющаяся смертельной для всех 100% животных, взятых в опыт.
-
Средняя смертельная доза микробов LD50 (Dosis letalis 50%)—доза микробов, вызывающая гибель 50% зараженных животных.
-
Показатель LD50 позволяет получить более достоверные результаты, и потому он чаще других используется в практике экспериментальных исследований.
В отличие от Dlm и Dll, определявшихся непосредственно по результатам опыта, LD50 вычисляется путем довольно сложных математических расчетов. Более прост метод Кербера, в котором простота расчета удачно сочетается с достаточно высокой точностью получаемых результатов.
Аттенуация — искусственное стойкое ослабление вирулентности патогенных микроорганизмов, сохраняющих способность вызывать иммунитет. Аттенуация используется при изготовлении живых вакцин против туберкулеза, оспы. Термин произошел от латинского слова attenuatio — уменьшение.