Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / Физика.doc
Скачиваний:
64
Добавлен:
15.06.2014
Размер:
1.77 Mб
Скачать

2.1.2.Давление идеального газа

Самой простой моделью макроскопического вещества является газ частиц. Газ представляет собой достаточно разреженную систему частиц. Частицы в газе находятся на значительном удалении друг от друга, совершая свободное движение и время от времени сталкиваясь друг с другом. Поэтому в первом приближении при рассмотрении газа можно не учитывать размеры и форму молекул, т. е. считать частицы материальными точками. По этой же причине можно пренебречь взаимодействием частиц на расстоянии, и к столкновениям частиц между собой и со стенками сосуда применять законы соударений упругих шаров. Такой газ называется идеальным. Модель идеального газа позволяет описать существенные черты поведения реального вещества.

Пусть в прямоугольном сосуде находится N молекул идеального газ». Стенки сосуда будем считать «идеально, отражающими». Примем,что при отражении от стенки скорость молекулы не меняется по величине, но меняется лишь по направлению. Если молекула, компонента скорости которой в направлении осиx равнаvx, ударяется о стенку, то после отражения компонента ее скорости в этом направлении будет ‑vx.

Для изменения импульса в этом же направлении имеем px = 2·m·vx.

Долетев до противоположной стенки, молекула отразится от нее и снова ударится о первую стенку. Время между ударами составит Δt= 2·/vx, а число ударов за 1 с будет. За 1 с молекула сообщит стенке импульс с компонентой вдоль осиx

.

Но импульс, передаваемый за единицу времени стенке, равен силе, с которой данная молекула действует на стенку. Таким образом, i-я молекула действует на стенку с силой, компонента которой в направлении осиx Fix =mv2ix/.

Компонента силы, действующей вдоль оси x со стороны всех частиц, находящихся в сосуде, составит .

Перепишем это соотношение в виде.

Величина есть средний квадрат компоненты скорости молекулы в направлении оси x. Поэтому. Если эту силу разделить на площадь стенки S, то получим величину давления на стенку:

. (2.5)

Но ·S есть объем сосудаV. Значит:.

Таким образом, давление газа на стенку оказалось связанным со средним квадратом скорости смещения частиц в направлении нормали к стенке.

Воспользуемся теперь соотношением v2i =v2ix +v2iy +v2iz.

Усредняя его по всем частицам, получим <v2> = <v2x> + <v2y> + <v2z>.

Но все направления в пространстве равноправны, поэтому <v2x> = <v2y> = <v2z>и, следовательно, <v2x> = <v2>/3. Выражение для давления принимает вид

.

Учтем, что величина m<v2>/2 равна средней кинетической энергии поступательного движения молекул <Ek>. Окончательно получим:

. (2.6)

Это соотношение одно из основных в кинетической теории газов.

2.1.3. Уравнение состояния идеального газа

В процессе вывода соотношения (2.6) возникли еще две макроскопические характеристики системы многих частиц — давление P и объемV . Задание температуры, давления и объема определяет состояние системы частиц (тела). Эти величины называются параметрами состояния.

Давление P, объемV и температура,T не являются независимыми величинами. Соотношение, связывающее эти три параметра, видаf(P,V,T) = 0 называется уравнением состояния. Найдем уравнение состояния идеального газа. Подставляя в соотношение (2.6) выражение (2.3), получим

PV = N·kБ·T. (2.7)

Отметим универсальный характер полученного уравнения: в него не входят никакие величины, характерные для определенного газа, а только числа частиц. Отсюда следует, в частности, что при одинаковых давлении и температуре разные газы, занимающие равные объемы, содержат в них равные числа молекул. Этот закон был установлен ранее опытным путем Авогадро.

Перепишем уравнение состояния в терминах объема, приходящегося на единицу вещества — моль. Один моль — это количество вещества в граммах, численно равное его молекулярному весу. Например, 1 моль кислорода содержит 32 г вещества. Удобство этой единицы измерения состоит в том, что по определению в 1 моле любого вещества содержится одинаковое число молекул, называемое числом Авогадро NA . Оно равно 6·1023молекул. Число молекул в объеме газа можно записать в виде:

N = ν·NA,

где v — число молей данного вещества в указанном объеме. В этих обозначениях уравнение состояния принимает вид:

PV=v·R·T. (2.8)

Величина R =kБNA называетсягазовой постоянной.Пусть при нагревании газа на 1 К объем, занимаемый 1 молем газа, изменился при неизменном давлении на ΔV . Представляя давление газа в видеP =F/S, а объем сосуда в виде ΔV = , видим, что величинаPΔV=FΔh есть работа, произведенная газом при его расширении. Таким образом, физический смысл газовой постоянной состоит в том, что она численно равна работе, совершенной 1 молем газа при его нагревании на 1 К при постоянном давлении.

Соседние файлы в папке Лекции