
- •1.Общее представление о физиологии, общей биологии и морфологии, их место в системе высшего фармацевтического образования.
- •2.История развития физиологии (Гарвей, Декарт, Сеченов, Павлов, Анохин).
- •3.Физиологические функции организма. Понятие о гомеостазе и механизмах регуляции. Основные гомеостатические константы организма.
- •4.Механизмы регулирования функций. Принцип саморегуляции. Роль обратных связей.
- •5.Возбудимость, определение, количественная оценка возбудимости ткани, изменения возбудимости при возбуждении.
- •6.Биоэлектрические процессы в возбудимых тканях. Мембранно-ионная теория происхождения биоэлектричества.
- •7.Влияние катода и анода постоянного тока на мембрану клетки.
- •8.Потенциал действия. Его основные части. Механизм возникновения.
- •9.Возбуждение, определение. Виды (местное и распространяющееся), их физиологическая характеристика.
- •10.Торможение, определение. Виды (деполяризационное и гиперполяризационное). Физиологическая характеристика.
- •11.Синапс. Определение, строение. Классификация (по морфологическому, нейрохимическому и функциональному признакам).
- •12.Этапы и механизм синаптической передачи. Функции возбуждающего и тормозного синапсов.
- •13.Функциональные изменения синапсов под влиянием миметиков, литиков и антихолинэстеразных веществ. Физиологические механизмы регуляции синаптической передачи
- •14.Лабильность, определение. Мера лабильности, ее изменение при парабиозе (Введенский).
- •15.Опорно-двигательный аппарат, его компоненты, активная и пассивная части.
- •17.Виды мышечного сокращения: одиночное и тетаническое, механизм возникновения (Гельмгольц Введенский). Моторные единицы.
- •18.Механизм мышечного сокращения. Работа и сила мышц. Утомление мышц.
- •19.Представление о механизме пессимума нервно-мышечного препарата (а.Е.Введенский и современные представления).
- •20.Общий план строения нервной системы.
- •21.Нейрон, его строение, классификация; функции. Глион. Нейроглия. Структура и функции.
- •22.Закон и механизм проведения возбуждения нервными волокнами. Классификация и морфофизиологическая характеристика нервных волокон.
- •23.Рефлекс - основной вид деятельности. История учения о рефлексе (Декарт, Сеченов, Павлов, Анохин).
- •24.Классификация рефлексов. Рефлекторная дуга, назначение ее составных частей. Общие представления о функциональных системах организма. (п.К.Анохин).
- •25.Основные нервные процессы в цнс. Физиологическая характеристика.
- •26.Нервные центры, их физиологическая роль и основные свойства.
- •27.Координация рефлекторных процессов. Основные принципы: общего конечного пути, реципрокности, обратной связи, доминанты, временной связи.
- •28.Анатомия и физиология спинного и продолговатого мозга.
- •29.Анатомия и физиология среднего и промежуточного мозга.
- •30.Анатомия и физиология мозжечка.
- •31.Анатомия и физиология базальных ганглиев и лимбической системы.
- •32.Анатомия и физиология коры больших полушарий головного мозга.
- •33.Анатомия и физиология ретикулярной формации.
- •34.Строение и основные физиологические свойства вегетативной нервной системы (симпатическая, парасимпатическая и метасимпатическая части).
- •35.Рефлекторная дуга вегетативных рефлексов.
- •36.Влияние фармакологических веществ на функции синапсов: облегчение и торможение синаптической передачи (фармакологическая регуляция).
- •37.Вегетативные рефлексы и их участие в приспособительных реакциях организма.
- •38.Центры регуляции вегетативных функций.
- •39.Значение гипоталамуса, подкорковых ядер и коры больших полушарий головного мозга в регуляции вегетативных функций организма.
- •40.Общее представление об органах чувств. Свойства рецепторов.
- •41.Механизм возбуждения рецепторов (рецепторный потенциал и потенциал действия).
- •42.Адаптация рецепторов и ее механизмы.
- •43.Анализаторы, основные части, физиологическая роль (и.П.Павлов).
- •44.Виды кожной чувствительности.
- •1. Боль
- •2 И 3. Температурные ощущения
- •4. Прикосновение, давление
- •45.Анатомия и физиология зрительного анализатора.
- •46.Анатомия и физиология слухового анализатора и органа равновесия.
- •47.Анатомия и физиология вкусового и обонятельного анализаторов.
- •48.Общие представления о высшей нервной деятельности. Строение конечного мозга. Кора больших полушарий головного мозга.
- •49.Условные рефлексы, биологическая роль и правила образования (и.П.Павлов). Механизм образования временной связи (и.П.Павлов, п.К.Анохин, э.А.Асратан).
- •Формирование условного рефлекса
- •50.Теория функциональной системы (Анохин).
- •51.Классификация условных рефлексов.
- •Сложные - условный сигнал состоит из комплекса раздражителей:
- •52.Корковое торможение, виды и физиологическая роль.
- •53.Сон, представление о механизме (и.П.Павлов, п.К.Анохин, современные представления).
- •Единый процесс или различные состояния?
- •54.Учение Павлова о типах высшей нервной деятельности человека.
- •55.Экспериментальные неврозы (и.П.Павлов). Эмоциональный стресс.
- •Перенапряжение тормозного процесса
- •56.Особенности высшей нервной деятельности человека.
- •57.Аналитическая и синтетическая деятельность коры головного мозга.
- •6. Кровь
- •58.Функции и состав крови.
- •59.Форменные элементы крови, морфология и функция.
- •60.Плазма крови, ее состав, функции белков плазмы.
- •61.Гемоглобин, его функции и соединения. Методы определения.
- •62.Гемолиз эритроцитов. Кровезамещение жидкости, их физиологическая роль.
- •63.Механизмы гемостаза (сосудисто-тромбоцитарный, гемокоагуляционный).
- •64.Регуляция свертывания крови.
- •65.Средства, применяемые при нарушении свертывания крови (антитромботические и гемостатические).
- •I. Гемостатики
- •II. Средства , понижающие свертываемость крови , или антитромботические средства :
- •66.Группы крови человека. Резус-фактор.
- •7. Кровообращение
- •67.Общий план строения сердечно-сосудистой системы. Круги кровообращения. Значение кровообращения для организма.
- •68.Деятельность сердца, физиологические свойства сердечной мышцы. Механизмы саморегуляции.
- •69.Сердечный цикл, роль клапанного аппарата сердца.
- •70.Парасимпатическая и симпатическая иннервация сердца. Влияние нервов на частоту сердечных сокращений и их силу. Механизм этих влияний.
- •71.Рефлекторная (экстракардиальная) и гуморальная регуляция сердечной деятельности.
- •Гуморальная регуляция деятельности сердца
- •72.Движение крови по сосудам. Функциональные группы сосудов (амортизирующие, сопротивления, сосуды сфинкт, обменные, емкостные, шунтирующие). Основные закономерности гемодинамики. Давление крови.
- •Основные закономерности Равенство объёмов кровотока
- •Движущая сила кровотока
- •73.Иннервация сосудов. Сосудодвигательные нервы и их центры (адренореактивная и холинреактивная система синапсов сосудистых нервов).
- •74.Рефлекторная регуляция сосудистого тонуса.
- •75.Гуморальная регуляция сосудистого тонуса.
- •76.Роль рефлексогенных зон в регуляции кровяного давления.
- •77.Регуляция кровяного давления, роль нервных и гуморальных влияний. Значение безусловнорефлекторных и условнорефлекторных механизмов в регуляции.
- •78.Функциональная система, поддерживающая оптимальное для метаболизма артериальное давление.
- •8. Дыхание.
- •79.Общий план строения дыхательной системы. Значение дыхания для организма.
- •80.Внешнее дыхание. Механизм вдоха и выдоха. Легочная вентиляция.
- •81.Обмен газов в тканях и легких.
- •82.Транспорт газов кровью.
- •83.Регуляция актов вдоха и выдоха. Роль блуждающего нерва.
- •84.Регуляция дыхания. Роль нервных и гуморальных влияний. Значение безусловнорефлекторного и условнорефлекторного механизмов в регуляции. Функциональная система внешнего дыхания.
- •9. Пищеварение.
- •85.Общий план строения пищеварительной системы (внутренние органы, их иннервация, пищевой центр). Строение пищеварительной трубки.
- •86.Значение пищеварения для организма. Методы изучения функций пищеварительного аппарата (Павлов).
- •87.Пищеварение в полости рта. Состав и свойства слюны, регуляция слюноотделения.
- •Глотание
- •88.Пищеварение в желудке. Методика исследования желудочной секреции. Состав желудочного сока и расщепление пищи в желудке.
- •89.Регуляция желудочной секреции, фазы (Павлов).
- •90.Пищеварение в тонкой кишке.
- •91.Поджелудочная железа, ее функции. Состав и свойства сока.
- •92.Регуляция секреции поджелудочной железы.
- •93.Печень, ее функции в организме. Желчь и ее участие в пищеварении.
- •95.Общие представления о механизмах всасывания в пищеварительном тракте.
- •96.Функциональная система пищеварения, поддерживающая оптимальный для метаболизма уровень питательных веществ в организме. Физиологические основы голода, насыщения и жажды.
- •10. Обмен веществ и энергии.
- •97.Значение обмена веществ и энергии для организма человека.
- •98.Методы изучения обмена энергии у человека (прямая и непрямая калориметрия). Методы исследования энергообмена Прямая калориметрия
- •99.Понятие об основном и общем (валовом) обмене. Исследование валового обмена
- •100.Регуляция обмена веществ и энергии.
- •101.Терморегуляция в организме человека. Центр терморегуляции.
- •11. Органы выделения.
- •102.Общие представления о системе выделения. Строение почек и нефрона.
- •103.Функции почек. Механизм клубочковой ультрафильтрации веществ.
- •104.Канальцевая реабсорбция и секреция веществ в нефроне.
- •105.Состав и количество первичной и вторичной мочи.
- •106.Участие почек в регуляции постоянства состава (гомеостаз) внутренней Среды организма, эндокринная функция почек.
- •107.Регуляция деятельности почек.
- •108.Выделение мочи.
- •12. Внутренняя секреция.
- •109.Общие представления о железах внутренней секреции и гуморальном взаимодействии органов и тканей человека.
- •110.Вилочковая железа.(Тимус).
- •111.Щитовидная и околощитовидная железы, их гормоны, регуляция функций. Щитовидная железа
- •Околощитовидные железы
- •112.Поджелудочная железа как орган внутренней секреции, гормоны и регуляция функций.
- •113.Надпочечники, половые железы, гормоны и регуляция функций.
- •Половые железы
- •114.Гипофиз, гормоны передней, средней и задней доли, регуляция функций гипофиза.
- •115.Эпифиз, его физиологическая роль.
- •116.Тканевые гормоны. Биологически активные вещества негормональной природы. (см.Практикум).
- •117.Размножение. Строение и функции половых органов.
- •118.Половые железы, их гормоны и их роль в организме. Оплодотворение, беременность, роды. Маточный цикл и его фазы. Половые железы
- •Маточный цикл, фазы цикла
83.Регуляция актов вдоха и выдоха. Роль блуждающего нерва.
Регуляция вдоха и выдоха . Смене дыхательных фаз способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов. При перерезке блуждающих нервов дыхание у животных становится более редким и глубоким. Следовательно, импульсы, поступающие от рецепторов легких обеспечивают смену вдоха на выдох и смену выдоха вдохом .
В эпителиальном и субэпителиальном слоях всех воздухоносных путей, а также в области корней легких расположены так называемые ирритантные рецепторы, которые обладают одновременно свойствами механо- и хеморецепторов. Они раздражаются при сильных изменениях объема легких, часть этих рецепторов возбуждается при вдохе и выдохе . Ирритантные рецепторы возбуждаются также под действием пылевых частиц, паров едких веществ и некоторых биологически активных веществ, например, гистамина. Однако, для регуляции смены вдоха и выдоха большее значение имеют рецепторы растяжения легких, которые чувствительны к растяжению легких.
Во время вдоха , когда воздух начинает поступать в легкие, они растягиваются и рецепторы, чувствительные к растяжению возбуждаются. Импульсы от них по волокнам блуждающего нерва поступают в структуры продолговатого мозга к группе нейронов, составляющих дыхательный центр (ДЦ). Как показали исследовании в продолговатом мозге в его дорсальных и вентральных ядрах локализованы центр вдоха и выдоха . От нейронов центра вдоха возбуждение поступает к мотонейронам спинного мозга, аксоны которых составляют диафрагмальный, наружные межреберные и межхрящевые нервы, иннервирующие дыхательные мышцы. Сокращение этих мышц еще больше увеличивает объем грудной клетки, воздух продолжает поступать-в альвеолы, растягивая их. Поток импульсов в дыхательный центр от рецепторов легких увеличивается. Таким образом, вдох стимулируется вдохом .
Нейроны дыхательного центра продолговатого мозга как бы разделены (условно) на две группы. Одна группа нейронов дает волокна к мышцам, которые обеспечивают вдох , эта группа нейронов получила название инспираторных нейронов (инспираторный центр), т. е. центр вдоха . Другая же группа нейронов, отдающих волокна к внутренним межреберным, и ; межхрящевым мышцам, получила название экспираторных нейронов (экспираторный центр), т. е. центр выдоха .
Нейроны экспираторного и инспираторного отделов дыхательного центра продолговатого мозга обладают различной возбудимостью и лабильностью. Возбудимость инспираторного отдела выше, поэтому его нейроны возбуждаются .при действии малой частоты импульсов, приходящих от рецепторов легких. Но по мере увеличения размеров альвеол во время вдоха , частота импульсов от рецепторов легких все больше и больше нарастает и на высоте вдоха она настолько велика, что становится пессимальной для нейронов центра вдоха , но оптимальной для нейронов центра выдоха . Поэтому нейроны центра вдоха тормозятся, а нейроны центра выдоха возбуждаются. Таким образом, регуляция смены вдоха и выдоха осуществляется той частотой, которая идет по афферентным нервным волокнам от рецепторов легких к нейронам дыхательного центра.
Помимо инспираторных и экспираторных нейронов в каудальной части варолиева моста обнаружена группа клеток, получающих возбуждения от инспираторных нейронов и тормозящих активность экспираторных нейронов. У животных с перерезкой ствола мозга через середину варолиева моста дыхание становится редким, очень глубоким с остановками на некоторое время в фазе вдоха , получивших название айпнезисов. Группа клеток, создающая подобный эффект, получила название апноэстического центра.
Дыхательный центр продолговатого мозга испытывает влияния со стороны вышележащих отделов ЦНС. Так, например, в передней части варолиева моста расположен пневмотаксический центр, который способствует периодической деятельности дыхательного центра, он увеличивает скорость развития инспираторной активности, повышает возбудимость механизмов выключения вдоха , ускоряет наступление следующей инспирации.
Гипотеза пессимального механизма смены фазы вдоха фазой выдоха не нашла прямого экспериментального подтверждения в опытах с регистрацией клеточной активности структур дыхательного центра. Эти эксперименты позволили установить сложную функциональную организацию последнего. По современным представлениям возбуждение клеток инспираторного отдела продолговатого мозга активирует деятельность апноэстического и пневмотаксического центров. Апноэстический центр тормозит активность экспираторных нейронов, пневмотаксический - возбуждает. По мере усиления возбуждения инспираторных нейронов под влиянием импульсации от механо- и хеморецепторов усиливается активность пневмотаксического центра. Возбуждающие влияния на экспираторные нейроны со стороны этого центра к концу фазы вдоха становятся преобладающими над тормозными, приходящими со стороны апноэстического центра. Это приводит к возбуждению экспираторных нейронов, оказывающих тормозящие влияния на инспираторные клетки. Вдох тормозится, начинается выдох .
По-видимому, существует самостоятельный механизм торможения вдоха и на уровне продолговатого мозга. К этому механизму относят специальные нейроны (I бета), возбуждаемые импульсами от механорецепторов растяжения легких и инспираторно-тормозные нейроны, возбуждаемые активностью нейронов I бета. Таким образом, при увеличении импульсации от механорецепторов легких увеличивается активность I бета нейронов, что в определенный момент времени (к концу фазы вдоха ) вызывает возбуждение инспираторно-тормозных нейронов. Их активность тормозит работу инспираторных нейронов. Вдох сменяется выдохом .
В регуляции дыхания большое значение имеют центры гипоталамуса. Под влиянием центров гипоталамуса происходит усиление дыхания, например, при болевых раpдражениях, при эмоциональном возбуждении, при физической нагрузке.
В регуляции дыхания принимают участие полушария большого мозга, которые участвуют в тонком адекватном приспособлении дыхания к меняющимся условиям существования организма.
Нейроны дыхательного центра ствола мозга обладают автоматизмом, т. е. способностью к спонтанному периодическому возбуждению. Для автоматической деятельности нейронов ДЦ необходимо постоянное поступление к ним сигналов от хеморецепторов, а также от ретикулярной формации ствола мозга. Автоматическая деятельность нейронов ДЦ находится под выраженным произвольным контролем, который состоит в том, что человек может в широких пределах изменять частоту и глубину дыхания.
Деятельность дыхательного центра в значительной степени зависит от напряжения газов в крови и концентрации в ней водородных ионов. Ведущее значение в определении величины легочной вентиляции имеет напряжение углекислого газа в артериальнои-крови, оно как бы создает запрос на нужную величину вентиляции альвеол.
Содержание кислорода и особенно углекислого газа поддерживается на относительно постоянном уровне. Нормальное содержание кислорода в организме называется нормоксия, недостаток кислорода в организме и тканях - гипоксия, а недостаток кислорода в крови - гипоксемия. Увеличение напряжения кислорода в крови называется гипероксия.
Нормальное содержание углекислого газа в крови называется нормокапния, повышение содержания углекислого газа - гиперкапния, а снижение его содержания - гипокапния.
Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются увеличением вентиляции легких - гиперпноэ, что приводит к выделению из организма избытка углекислого газа. увеличение вентиляции легких происходит за счет увеличения глубины и частоты дыхания.
Гипокапния и повышение уровня рН крови приводит к уменьшению вентиляции легких, а затем и к остановке дыхания - апноэ.
Углекислый газ, водородные ионы и умеренная гипоксия вызывают усиление дыхания за счет усиления деятельности дыхательного центра, оказывая влияние на специальные хеморецепторы. Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и в дуге аорты. Артериальные хеморецепторы расположены в специальных маленьких тельцах, которые богато снабжены артериальной кровью. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы, особенно каротидных телец, информируют дыхательный центр о напряжении кислорода и углекислого газа в крови, которая направляется к мозгу.
В продолговатом мозге обнаружены центральные хеморецепторы, которые постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Они существенно изменяют вентиляцию легких Например, снижение рН спиномозговой жидкости на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.
Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.