
- •Электролитическая диссоциация
- •Степень электролитической диссоциации
- •Гидратация
- •Двойной электрический слой
- •Электрохимический (электродный) потенциал
- •Электролиз. Химическое действие электрического тока
- •Поляризация
- •Поляризационные кривые
- •Деполяризация
- •Кислотность растворов
- •В процессе электролиза
- •Контрольные вопросы
- •Глава 1.2 Коррозия. Общие сведения
- •Понятие о коррозии
- •Классификация процессов коррозии
- •Химическая коррозия
- •Электрохимическая коррозия
- •Классификация коррозионных повреждений
- •Сплошная коррозия
- •Местная коррозия
- •Способы количественной оценки величины коррозии
- •Контрольные вопросы
- •Основные факторы, влияющие на интенсивность почвенной коррозии
- •Шкала для определения механического состава почвы в поле
- •Коррозионные микро- и макроэлементы на поверхности трубопроводов
- •Естественный (стационарный) потенциал подземного металлического сооружения
- •Коррозия блуждающими токами (электрокоррозия) Источники блуждающих токов и их влияние на коррозионное состояние газопровода
- •Механизм возникновения и действия коррозионных процессов
- •Мероприятия по ограничению утечек тока
- •Гальванического коррозионного элемента
- •По отношению к стали в зависимости от состава грунта
- •Под действием блуждающих токов
- •Контрольные вопросы
- •Оценочные критерии коррозионной активности грунтов
- •Способы защиты подземных металлических сооружений от коррозии
- •Защита подземных металлических сооружений изолирующими покрытиями
- •Основные требования, предъявляемые к изоляционным покрытиям
- •Конструкции изоляционных покрытий
- •Типы изоляционных покрытий, применяемых на магистральных газопроводах
- •Факторы, влияющие на скорость разрушения изоляционных покрытий в подземных условиях
- •Электрохимическая защита подземных металлических сооружений
- •Принципы электрохимической защиты
- •Катодная защита
- •Протекторная защита
- •Электродренажная защита
- •Контроль эффективности электрохимической защиты и коррозионного состояния газопровода
- •Переходного сопротивления покрытий Rп от времени t
- •Объясняющая механизм защиты при катодной поляризации
- •Протекторной установки
- •Поляризованной дренажной установки типа упду-57 Контрольные вопросы
- •Провода и грозозащитные тросы
- •Линейная изоляция
- •Линейная арматура
- •Устройства грозозащиты
- •Эксплуатация воздушных линий электропередачи
- •Технический осмотр воздушных линий электропередачи
- •Типовая форма листка осмотра воздушной линии электропередачи
- •Характерные дефекты и неисправности воздушных линий электропередачи
- •Допустимые прогибы элементов металлических опор и металлических деталей железобетонных опор
- •Внеочередные осмотры воздушных линий электропередачи
- •Инженерно-технические осмотры воздушных линий электропередачи
- •Верховые осмотры воздушных линий электропередачи
- •Верховые ревизии (проверки) воздушных линий электропередачи
- •Ведомость верховой ревизии и верхового осмотра на воздушной линии
- •Контрольные вопросы
- •Кабельные муфты
- •Эксплуатация силовых кабельных линий
- •Технический осмотр
- •Надзор за кабельными линиями и их трассами
- •Ремонт кабельных линий
- •Контрольные вопросы
- •Типы трансформаторов и область их применения
- •Конструктивные особенности силовых трансформаторов типа ом
- •Эксплуатация силовых трансформаторов
- •Основные правила обслуживания трансформаторов
- •Подготовка к включению
- •Уход за трансформаторным маслом
- •Планово-предупредительный осмотр и ревизия силовых трансформаторов
- •Технический осмотр
- •Перечень работ, производимых при техническом осмотре трансформатора
- •Ревизия электрических трансформаторов
- •Перечень работ, проводимых при ревизии
- •Сроки ревизии электрических трансформаторов с рабочим
- •Неисправности в электрических трансформаторах и их устранение
- •Контрольные вопросы
- •Классификация разъединителей
- •Конструкция и принцип действия разъединителей и их приводов
- •Эксплуатация разъединителей
- •Технический осмотр
- •Текущий ремонт
- •Ремонт разъединителей
- •Ремонт изоляторов
- •Ремонт контактных ножей
- •Порядок проведения операций с разъединителями
- •Контрольные вопросы
- •Контактов разъединителя динамометром
- •Высоковольтные предохранители типа пк
- •Эксплуатация высоковольтных предохранителей
- •Технический осмотр
- •Текущий ремонт
- •Замена патрона предохранителя
- •Контрольные вопросы
- •Глава 2.6 Высоковольтные разрядники
- •Назначение и классификация разрядников
- •Устройство вентильных разрядников
- •Принцип действия вентильных разрядников
- •Конструкция вентильных разрядников
- •Устройство трубчатых разрядников
- •Принцип действия трубчатых разрядников
- •Конструкция трубчатых разрядников
- •Эксплуатация разрядников
- •Технический осмотр разрядников
- •Неисправности и ремонт трубчатых разрядников
- •Контрольные вопросы
- •Принцип действия
- •Конструкция защитного заземления
- •Минимальные размеры стальных заземлителей
- •Эксплуатация защитного заземления Основные требования к организации эксплуатации
- •Технический осмотр
- •Минимальные размеры стальных защитных проводников
- •Ремонт и испытания заземляющих устройств
- •Выполняемых термитно-тигельной сваркой
- •Методом «вольтметра-амперметра»
- •Контрольные вопросы
- •Принцип действия
- •Источники тока станций катодной защиты
- •Сетевые источники тока скз
- •Анодные заземления
- •Классификация анодных заземлений
- •Стальные анодные заземления
- •Железокремнистые анодные заземления
- •Эксплуатация установок катодной защиты
- •Технический осмотр
- •Текущий ремонт
- •Основные неисправности укз и способы их устранения
- •Контрольные вопросы
- •Типового неавтоматического источника питания скз
- •Коксовой мелочи
- •Область применения устройств протекторной защиты
- •Основные показатели эффективности протекторной защиты
- •Некоторые электрохимические свойства магния, алюминия и цинка
- •Магниевые протекторы Магниевые протекторные сплавы
- •Химический состав магниевых протекторных сплавов
- •Физико-химические свойства магниевых протекторных сплавов
- •Устройство протекторов из магниевых сплавов
- •Основные технические характеристики протекторов типа мга
- •Основные технические характеристики протекторов типа пм
- •Основные технические характеристики упакованных протекторов
- •Размеры и масса прутковых (ленточных) магниевых протекторов
- •Активаторы
- •Рецептура составления активатора на один протектор
- •Типы и устройство протекторных установок
- •Эксплуатация установок протекторной защиты
- •Технический осмотр
- •Текущий ремонт
- •Анализ работы протекторных установок
- •Контрольные вопросы
- •Рассредоточенными (б) и групповыми сосредоточенными (в) протекторами и кривые распределения разности потенциалов «труба – земля»
- •Контрольно-измерительной колонкой
- •Подключение протекторов к соединительному кабелю (б)
- •Подземной металлической емкости (б)
- •Глава 4.1 Измерения на подземных сооружениях
- •Измерение разности потенциалов «труба‑земля»»
- •Измерение силы и направления тока, текущего по газопроводу
- •Определение удельного электрического сопротивления грунта и качества изолирующего покрытия
- •Определение характера коррозионного взаимодействия подземных сооружений
- •Грунта симметричной четырехэлектродной установкой
- •Контрольные вопросы
- •Глава 4.2 Измерения на сооружениях электрохимической защиты
- •Измерения на станциях катодной защиты
- •Измерения на протекторных установках
- •Измерения на изолирующих фланцах
- •Измерения, проводимые на полупроводниковых диодах и транзисторах
- •Контрольные вопросы
- •Глава 4.3 Приборы для электрических и коррозионных измерений
- •Общие сведения
- •Приборы для измерения напряжения и силы тока
- •Приборы для измерения потенциалов
- •Приборы для измерения сопротивления заземления и удельного сопротивления грунта
- •Мегомметры
- •Измерительные электроды
- •Измерительные провода, рулетки
- •Технические данные рулеток рип-5 и рип-10
- •Приборы для проведения коррозионных обследований трубопроводов
- •Контрольные вопросы
- •Измерителя заземлений мс-08
- •Замечания
Электролиз. Химическое действие электрического тока
Проведем небольшой опыт. В сосуд, содержащий раствор медного купороса (CuSO4) поместим два медных электрода и соединим их с источником постоянного электрического тока так, как показано на рис. 1.1.4. При этом вокруг каждого электрода образуется двойной электрический слой: металл приобретет некоторый отрицательный, а раствор соответственно положительный заряд. При замыкании выключателя Вк между электродами А и В возникнет электрическое поле, под воздействием которого катионы Cu2+ начнут концентрироваться вокруг электрода В, а анионы SO42– – вокруг электрода А. Следовательно, потенциал электрода А относительно раствора станет более положительным, а электрода В - более отрицательным. При таком нарушении состояния динамического равновесия на электроде А преобладающей станет реакция ионизации (разрушение металла – переход ионов металла в раствор), а на электроде В - реакция кристаллизации (восстановление металла - отбор ионов металла из раствора и осаждение их на электроде), т.е.:
на электроде А: Cu Cu2+ + 2,
на электроде В: Cu2+ + 2 Cu.
Причем, электроны, образующихся на электроде А будет стекать к положительному полюсу источника тока, а электроны, расходующиеся на электроде В будут пополняться за счет перетекания от отрицательного полюса источника тока.
Таким образом, между положительным и отрицательными полюсами источника тока возникнет электрический ток, сопровождающийся разрушением меди на электроде А и одновременным ее восстановлением из раствора на электроде В. Подобное прохождение электрического тока от внешнего источника через растворы и сопровождающиеся протеканием электрохимических реакций на электродах принято называть электролизом.
Количество металла, перенесенного с одного электрода на другой, можно определить по формуле Фарадея для электролиза:
G = k·I·t,
где G – количество металла, г; k – электрохимический эквивалент металла, г/(А·час); t – время прохождения тока, час.
Электрохимический эквивалент металла показывает, какое количество металла должно раствориться (или восстановиться) для поддержания в процессе электролиза определенной силы тока в течении определенного промежутка времени. Электрохимические эквиваленты некоторых металлов и сплавов приведены в табл. 1.1.2
Таблица 1.1.2
Электрохимические эквиваленты некоторых металлов и сплавов
Металл (сплав) |
Электрохимический эквивалент, г/(А·час) |
Металл (сплав) |
Электрохимический эквивалент, г/(А·час) |
Цинк |
1,22 |
Алюминий |
0,335 |
Железо |
1,04 |
Сплав МЛ-4 |
0,446 |
Магний |
0,45 |
|
|
Поляризация
При пропускании электричества через раствор электролита можно заметить, что сила тока постепенно уменьшается. Для поддержания постоянной силы тока необходимо увеличивать напряжение внешнего источника тока.
Так как омическое падение напряжения в электролите для данной температуры постоянно, то, следовательно, увеличение сопротивления в цепи происходит за счет изменения электрохимических потенциалов электродов. Изменение, или как говорят, сдвиг потенциала от равновесного значения называют поляризацией электрода.
Наиболее распространенной причиной поляризации является изменение величины потенциала электрода при изменении концентрации ионов вблизи электрода. В частности, после замыкания электрической цепи в прилегающем к электроду А (аноду) слое электролита концентрация ионов металла увеличивается за счет дополнительного перехода ионов металла в электролит. Увеличившаяся концентрация ионов металла препятствует дальнейшему переходу ионов в электролит, что равноценно появлению дополнительного сопротивления на границе анод - электролит, которое называют сопротивлением поляризации анода Rа. В прилегающем к электроду В (катоду) слое электролита после замыкания цепи концентрация ионов металла наоборот уменьшится за счет восстановления металла на электроде, и процесс подвода к поверхности катода ионов металла будет тормозиться образовавшимися у поверхности катода анионами электролита (в нашем случае SO42–), что равноценно появлению дополнительного сопротивления на границе катод - электролит, которое называют сопротивлением поляризации катода Rк.
В установившемся режиме ток, проходящий через электролит, определяется по формуле:
I = E / (R + Rк + Rа), А,
где E - напряжение источника постоянного тока, В; R - омическое сопротивление электролита, Ом; Rк - поляризационное сопротивление катода, Ом; Rа - поляризационное сопротивление анода, Ом.