- •Оглавление
- •II. Растворы
- •III. Процессы в растворах 23
- •V. Общие свойства растворов 30
- •1. Введение. Предмет химии. Основные понятия
- •Решение типовых задач
- •I. Классификация неорганических соединений
- •I.1Оксиды. Основные понятия и определения
- •1.1.1 Оснόвные оксиды
- •1.1.2 Кислотные оксиды
- •1.1.3 Амфотерные оксиды
- •1.2 Основания
- •1.3 Кислоты. Основные понятия и определения
- •1.3.1 Химические свойства азотной кислоты
- •1.3.2 Химические свойства серной кислоты h2so4
- •1.3.3 Химические свойства сероводородной кислоты
- •1.4 Соли. Основные понятия и определения
- •1.4.1 Химические свойства солей
- •1.4.2 Двойные и комплексные соли
- •1.5 Решение типовых задач
- •1.6 Упражнения для самостоятельной работы
- •1). Укажите недостающие компоненты реакции:
- •II. Растворы
- •2.1 Основные определения и понятия химии растворов
- •2.2 Способы выражения состава раствора
- •Вычисление молярной массы эквивалента вещества (Мэкв)
- •2.2.8 Расчет концентрации кристаллогидрата в растворе
- •2.2.9 Концентрация газа в растворе
- •2.3 Газофазные растворы
- •2.3.1 Решение задач
- •III. Процессы в растворах
- •3.1 Выпаривание
- •3.2 Осаждение из раствора
- •3.3 Произведение растворимости вещества (пр)
- •3.4 Разбавление растворов
- •3.5 Пересчет концентраций.
- •3.6 Задачи для самостоятельного решения
- •IV. Электролитическая диссоциация
- •4.1 Степень и константа диссоциации
- •4.2 Диссоциация воды. РН – раствора
- •4.3 Упражнения для самостоятельной работы.
- •V. Общие свойства растворов. Осмос.
- •5.1 Эбулиоскопия.
- •5.2 Криоскопия.
- •5.4 Изотонический коэффициент электролитов
- •5.5 Решение задач
- •5.6 Задачи для самостоятельного решения
- •VI. Окислительно-восстановительные реакции
- •6.1 Задачи для самостоятельного решения.
- •VII. Дисперсные системы. Основные понятия и определения
- •7.1 Классификация дисперсных систем
- •7.2 Коллоидные растворы
- •7.3 Строение мицеллы. Образование различных золей
- •7.4 Реакции образования мицеллы
- •7.5 Методы получения коллоидов и дисперсных систем
- •7.6 Электрокинетические явления в коллоидных растворах
- •7.7 Коагуляция коллоидного раствора
- •7.8 Задачи по теме дисперсные системы
- •VIII. Металлы. Основные понятия и определения
- •8.7 Драгоценные металлы.
- •8.8 Вопросы и задачи по теме «Металлы».
- •Справочный материал
- •Ряд активности металлов.
1. Введение. Предмет химии. Основные понятия
Химия – наука, изучающая процессы превращения веществ, сопровождающиеся изменением состава и структуры. В химии широко пользуются понятием элемента – определённого вида атомов с одинаковым зарядом ядра (ионы, изотопы и т.д.). Значение заряда ядра атома служит отличительным признаком для различных видов атомов.. В настоящее время известно 114 элементов, но нас будут интересовать только природные 89 элемента от водорода Н до урана U. Вещество может быть простым, т.е. состоять из атомов одного элемента и сложным, т.е. представленным атомами различных элементов. Например, простыми являются газы – кислород O2 и озон O3, а вода H2O – сложное вещество.
Атом –это наименьшая частица элемента, входящая в состав молекул простых и сложных веществ. Молекула – это наименьшая частица данного вещества, обладающая его химическими свойствами. Химические свойства молекулы определяются её составом и строением.
С точки зрения атомно-молекулярного учения химическим элементом называется каждый отдельный вид атомов.
Массы атомов чрезвычайно малы. Так, например, масса атома водорода составляет 1.67410-27 кг, а масса атома урана 3.95310-25 кг. В химии традиционно используются не абсолютные значения атомных масс, а относительные. За единицу атомной массы принята атомная единица массы (а.е.м.), которая представляет собой 1/12 часть массы атома изотопа углерода 12C, что составляет 1.6605410-27 кг. Поэтому относительной атомной массой Ar химического элемента называется величина, равная отношению средней массы атома естественного изотопического состава элемента к 1/12 массы атома углерода 12C. Например, относительная атомная масса урана составляет
238.06.
Современные значения атомных масс приведены в Периодической системе элементов.
Относительной молекулярной массой Mr вещества называется величина, равная отношению средней массы молекулы естественного изотопического состава элемента к 1/12 массы атома углерода 12C. Относительная молекулярная масса численно равна сумме относительных атомных масс всех атомов, входящих в состав молекулы вещества. Например,
В Международной системе единиц (СИ) за единицу количества вещества принят моль. Чтобы научиться пользоваться этой величиной, сначала определим элементарную единицу вещества. Определим число атомов точно в 12 г 12С:
Это число называется постоянной Авогадро (NA). Теперь можно сказать, что 1 моль любого вещества – это такое его количество, которое содержит NA элементарных единиц.
Молярная масса – величина, равная отношению массы вещества к количеству вещества. Она имеет размерность г/моль. Обычно её обозначают буквой M.
Молярная масса вещества, выраженная в г/моль, численно равна относительной атомной или относительной молекулярной массе этого вещества. Например, молярная масса газообразного кислорода M(O2) = 216 = 32 г/моль, а самородного золота M(Au) = 197 г/моль.
Газы при низких
давлениях можно описать как ансамбль
несвязанных друг с другом молекул
(идеальный
газ). Идеальные
газы подчиняются закону
Авогадро:
в равных объёмах различных газов при
одинаковых условиях (температуре и
давлении) содержится одинаковое число
молекул.
Если известна масса или количество
газа, а надо вычислить его объём, или
наоборот, используют уравнение
Менделеева-Клапейрона:
,
где p – давление газа, Па; V – его объём, м3; T – температура в абсолютной шкале, K; n – количество вещества газа, моль; m – масса, г; M – молярная масса газа, г/моль; R = 8.31441 Дж/(мольК) – универсальная газовая постоянная. При нормальных условиях (температуре 273.15 К и давлении 101325 Па) один моль идеального газа занимает объём равный 22.41 л.
Вещества, взаимодействуя друг с другом, подвергаются различным изменениям и превращениям. Явления, при которых одни вещества превращаются в другие, отличающиеся от исходных составом и свойствамиi, называют химическими превращениями, химическими реакциями или химическими взаимодействиями. При записи уравнения химической реакции следует помнить, что в соответствии с законом сохранения массы число атомов каждого типа, вступающих в реакцию, должно быть равно числу атомов этого же типа в продуктах реакции (баланс массы). Если в реакции участвуют заряженные частицы (ионы), то следует также учитывать баланс заряда. Например, уравнение реакции окисления иона Mn2+ кислородом воздуха запишется в виде
2Mn2+ + O2 + 2H2O 2MnO2 + 4H+
Коэффициенты, стоящие в этом уравнении перед формулами соединений, называются стехиометрическими и необходимы для выполнения условий баланса масс и зарядов.
