Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_K_Voprosam_Ekzamena_Po_Elektrotekhnike.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.76 Mб
Скачать

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

UmR = RIm;       UmL = ωLI,

а действующие величины

UR = RI; UL = XLI .

Вектор общего напряжения

U = UR + UL

Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ>0, но φ<90°, а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения в активном и индуктивном сопротивлениях UR и UL :

UR = Ucosφ 

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Для катушки по схеме рис. 13.9 при Ua = UR

U = Usinφ                                                        (13.14)

Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL

 

 

 

При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде

U = Umsin(ωt+φ)

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи. Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени. Из треугольника сопротивлений следует

 

 

Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

 

 

Из треугольников сопротивления и напряжения определяются

cosφ = UR/U = R/Z;    sinφ = UL/U = XL/Z;    tgφ = UL/U = XL/R. (13.18)

Мощность реальной катушки

Мгновенная мощность катушки

p = ui = Umsin(ωt+φ) * Imsinωt

Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’, сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты. При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном — наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).

Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).

Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.

Согласно выводам полученных в этих предыдущих  (первая, вторая) статьях — в активном сопротивлении P = URI   Q = 0;  а в индуктивном Р = 0; Q = ULI. 

Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная — реактивной мощности в индуктивном сопротивлении XL. Подставляя значения UR = Ucosφ и UL = Usinφ, определяемые из треугольника напряжений по формулам (13.18), получим:

                   P = UIcosφ                                (13.19)

                    Q = UIsinφ                                (13.20)

Кроме активной и реактивной мощностей пользуются понятием полной мощности S, которая определяется произведением действующих величин напряжения и тока цепи;

                   S = UI = I2Z                                (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

                        (13.22)                         

Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить

cosφ = P/S;       sinφ = Q/S;     tgφ = Q/P.             (13.23)

Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).

Активная мощность Р меньше или равна полной мощности цепи. Отношение активной мощности цепи к ее полной мощности P/S = = cosφ называют коэффициентом мощности.

Назначение приемников электрической энергии — преобразование ее в другие виды энергии. Поэтому колебания энергии в цепи не только бесполезны, но и вредны, так как при этом в приемнике не совершается полного преобразования электрической энергии в работу или тепло, а в соединительных проводах она теряется.

Схема замещения реальной катушки в с параллельным соединением элементов

Для реальной катушки можно составить и другую расчетную схему — с параллельным соединением двух ветвей: с активной G и индуктивной BL проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее. Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.

Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством

                                             I = IG + IL                                           (13.24)

Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: IG —ток в ветви с активной проводимостью, по фазе совпадает с напряжением; IL — ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.

Вектор тока I и его составляющие IG и IL образуют прямоугольный треугольник, поэтому

Составляющая тока в активном элементе

IG = Icosφ

Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается Iа. Для катушки по схеме на рис. 13.12, б Ia = IG.

Составляющая тока в реактивном элементе

IL = Isinφ

Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается. Для катушки Iр = IL .

Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = IG/U и индуктивная ВL = IL/U проводимости, а гипотенузой — величина Y = I/U, называемая полной проводимостью цепи.

Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим

43) Параллельное соединение активного и реактивного элементов.

При последовательном- складываются сопротивления, при параллельном -проводимости (1/R). Что активное, что реактивное. Для реактивного в формуле появляюся частота, индуктивнось и ёмкость.

44) напряжений: условия и признаки резонанса напряжений, резонансная частота

В последовательной цепи переменного тока с активным, индуктивным и емкостным сопротивлениями, в зависимости от соотношений XLи XC, можно выделить три характерных режима ее работы при: XL>XC, XL<XCиXL=XC.

Построим векторные диаграммы для всех трех случаев (рис. 2.14)

 

Рис. 2.14 Векторные диаграммы режимов работы последовательной цепи переменного тока.

Третья векторная диаграмма аналогична диаграмме цепи переменного тока с активным сопротивлением в том смысле, что , напряжение и ток совпадают друг с другом, угол сдвига фаз между ними . Отсутствие влияния реактивных сопротивлений на величину тока в цепи объясняется тем, что при равенстве между собой сопротивлений XL и XC, равные между собой и смещенные относительно друг от друга на 180° напряжения ULи UC взаимно компенсируются.

Величина тока в цепи при этом определяется только активным сопротивлением и достигает максимального значения.

=Imax (2.25)

Режим работы последовательной цепи переменного тока, когда XL=XCназывается резонансом напряжений. В случае наличия в цепи нескольких индуктивных и емкостных сопротивлений условием достижения резонанса напряжений является равенство:

 

Хотя, при резонансе напряжений, напряжения ULи UCне оказывают влияния на величину тока в цепи, эти напряжения существуют и могут значительно превышать напряжениеU, приложенное к зажимам цепи, что и предопределило название этого явления.Действительно

Отсюда видно, что при резонансе напряжений, напряжения на индуктивном или емкостном сопротивлениях во столько раз больше напряжения, приложенного к зажимам цепи, во сколько раз индуктивное или емкостное сопротивление больше активного сопротивления цепи.

Резонанс напряжений можно вызвать двумя способами:

а) изменением емкости конденсаторной батареи;

б) изменением частоты питающего тока.

а) Если постепенно увеличивать емкость конденсаторной батареи от нуля до некоторого конечного значения, то емкостное сопротивление будет уменьшаться, а токв цепи возрастать, в соответствии с выражением (2.25), и достигнет наибольшего значения при такой емкости Ср, когда XС окажется равным XL. Дальнейшее увеличение емкости приводит к снижению тока. Сказанное можно проиллюстрировать графиком (рис. 2.15).

 

Рис. 2.15. К определению резонанса напряжений.

б) Из условия резонанса напряжений следует , откуда илиfр , где fр– резонансная частота тока.

Сказанное иллюстрируется графиком (рис. 2.16).

 

Рис. 2.16. К определению резонансной частоты питающего тока

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]