- •1.Предмет химии. Основные количественные законы химии
- •Основные количественные законы химии
- •Расчёт молярных масс эквивалентов вещества
- •Количество вещества. Моль. Молекулярная масса
- •Строение атома. Квантовая теория. Квантовые числа
- •4. Порядок заполнения электронных уровней. Правило Клечковского
- •5.Заполнение электронами вырожденных (с одинаковой энергией) орбиталей. Правило Хунда
- •6. Принцип Паули
- •7. Современная формулировка периодического закона. Структура периодической системы д.И. Мен-делеева
- •8. Вертикальная и горизонтальная периодичность свойств элементов
- •9. Ковалентная химическая связь и ее особенности (направленность, насыщаемость, полярность, энер-гия и длина связи).
- •10. Ионная химическая связь и ее особенности.
- •11. Металлическая связь и ее особенности.
- •12. Водородная связь
- •13. Валентность элемента
- •14. Химическая система. Параметры системы и единицы их измерения
- •15. Тепловой эффект химической реакции. Закон Гесса
- •16. Химическое равновесие. Константа равновесия.
- •19. Свободная энергия Гиббса и направленность химических реакций
- •20. Принцип Ле-Шателье и его применение для анализа поведения химических систем.
- •21. Химическая кинетика. Скорость химической реакции. Катализаторы
- •22. Зависимость скорости от концентрации. Закон действующих масс
- •23. Влияние температуры на скорость реакции. Уравнение Аррениуса. Энергия активации.
- •24. Влияние температуры на скорость реакции. Правило Вант-Гофа.
- •25Растворы. Классификация растворов.
- •26.Растворы. Способы выражения концентрации растворов.
- •27. Эбулиоскопические и криоскопические константы растворов.
- •28. Химические равновесия в растворах. Сольватация. Электролитическая диссоциация
- •29. Степень диссоциации. Сильные и слабые электролиты
- •30. Константа диссоциации и ее связь со степенью диссоциации. Закон Оствальда.
- •Связь константы диссоциации и степени диссоциации:
- •31. Электролитическая диссоциация воды. Водородный показатель. Индикаторы.
- •32. Растворимость солей.
- •33. Гидролиз солей
- •34. Жесткость воды и методы ее устранения.
- •35. Степень окисления элементов в простых и сложных соединениях.
- •36. Составление стехиометрических уравнений простых и сложных окислительно-восстановительных
- •37. Гальванический элемент Даниэля-Якоби. Эдс элемента.
- •38. Стандартные потенциалы металлических элементов. Уравнение Нернста
- •39. Электролиз. Применение электролиза. Электролиз
- •40. Электрохимические процессы. Законы Фарадея
- •Законы Фарадея
- •1. Закон Фарадея.
- •2. Закон Фарадея.
- •41. Электролиз водных растворов. Процессы, протекающие на катоде. Электролиз водных растворов электролитов
- •Катодные процессы.
- •42. Электролиз водных растворов. Процессы, протекающие на аноде. Электролиз водных растворов электролитов
- •Анодные процессы.
- •43. Химическая и электрохимическая коррозия металлов.
- •44. Защита металлов от коррозии. Металлические покрытия. Анодные и катодные покрытия.
- •45. Катодная и анодная защита металлов от коррозии. Протекторы. Катодная защита от коррозии
- •Анодная защита
41. Электролиз водных растворов. Процессы, протекающие на катоде. Электролиз водных растворов электролитов
На ход процесса электролиза и характер конечных продуктов большое влияние оказывают природа растворителя, материал электродов, плотность тока на них и другие факторы. В водных растворах электролитов, кроме гидратированных катионов и анионов, присутствуют молекулы воды, которые также могут подвергаться электрохимическому окислению и восстановлению. Какие именно электрохимические процессы будут протекать на электродах при электролизе, зависит от значения электродных потенциалов соответствующих электрохимических систем.
Катодные процессы.
При прочих равных условиях ионы металлов восстанавливаются на катоде тем легче, чем менее активен металл, чем дальше вправо он расположен в ряду напряжений.
1) Катионы металлов, имеющие электродный потенциал более высокий, чем у ионов водорода Н+ (в ряду напряжений эти металлы стоят после Н2), при электролизе практически полностью восстанавливаются на катоде:
Cu2+ + 2e- → Cu0
2) Катионы металлов, имеющие низкую величину электродного потенциала (от начала ряда напряжения по алюминий включительно), не восстанавливаются на катоде и остаются в растворе, на катоде идет процесс электрохимического восстановления водорода из молекул воды:
2H2O + 2e- → H2 + 2OH¯
3) Катионы металлов, имеющие электродный потенциал ниже , чем у ионов водорода (Н+), но выше, чем у ионов алюминия (Al3+), т.е стоящих между Zn2+→ Men+ ← H2, при электролизе восстанавливаются на катоде одновременно с водородом.
Fe3+ + 3e- → Fe0
2H2O + 2e- → H2 + 2OH¯
Таким образом, характер катодного процесса при электролизе водных растворов электролитов определяется, прежде всего, положением соответствующего металла в ряду напряжения.
42. Электролиз водных растворов. Процессы, протекающие на аноде. Электролиз водных растворов электролитов
На ход процесса электролиза и характер конечных продуктов большое влияние оказывают природа растворителя, материал электродов, плотность тока на них и другие факторы. В водных растворах электролитов, кроме гидратированных катионов и анионов, присутствуют молекулы воды, которые также могут подвергаться электрохимическому окислению и восстановлению. Какие именно электрохимические процессы будут протекать на электродах при электролизе, зависит от значения электродных потенциалов соответствующих электрохимических систем.
Анодные процессы.
При электролизе веществ используется инертные, не изменяющиеся в процессе электролиза аноды (графитовые, платиновые) и растворимые аноды, окисляющиеся в процессе электролиза легче, чем анионы (из цинка, никеля, серебра, меди и других металлов).
1) Анионы бескислородных кислот (S2ˉ, I¯, Br¯, Cl¯) при их достаточной концентрации легко окисляются до соответствующих простых веществ.
2) При электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также плавиковой кислоты и фторидов происходит электрохимическое окисление воды с выделение кислорода:
в щелочных растворах: 4OH¯ - 4e- → O2 + 2H2O
в кислых и нейтральных растворах: 2H2O - 4e- → O2 + 4H+
