Скачиваний:
140
Добавлен:
14.06.2014
Размер:
227.33 Кб
Скачать

Экзаменационные вопросы по Гражданской обороне – 2010 год

  1. Гражданская оборона, ее организационная структура, роль и место в общей системе национальной безопасности России.

  2. Принципы организации и ведения гражданской обороны.

  3. Задачи и организационная структура гражданской обороны.

  4. Степени готовности гражданской обороны и их краткая характеристика.

  5. Основные санитарно-гигиенические и противоэпидемические мероприятия, проводимые в военное время в очагах применения ОМП.

  6. Основные санитарно-гигиенические и противоэпидемические мероприятия, проводимые в военное время при проведении эвакуационных мероприятий и в местах временного расселения.

  7. Организация санитарной экспертизы продовольствия и питьевой воды.

  8. Понятие о карантине и обсервации. Мероприятия по локализации и ликвидации очагов массовых инфекционных заболеваний и очагов заражения биологическими агентами.

  9. Задачи и организационная структура СЭО.

  10. Задачи и организационная структура СПЭБ.

  11. Задачи и организационная структура СЭБ.

  12. Задачи и организационная структура ГЭР. Возможности.

  13. Организационная структура гражданской службы гражданской обороны.

  14. Основные задачи органов управления гражданской обороны.

  15. МСГО федеральной исполнительной власти и ведомственных учреждений и их взаимодействие с МСГО здравоохранения.

  16. Объектовые формирования МСГО (санитарный пост, санитарная дружина): задачи, организационно-штатная структура, возможности по оказанию медицинской помощи.

  17. Медицинский отряд: задачи, база формирования, организационно-штатная структура, возможности по оказанию медицинской помощи.

  18. Бригады специализированной медицинской помощи: база формирования, задачи, состав, виды, возможности по оказанию медицинской помощи.

  19. Токсико-терапевтический подвижный госпиталь: база создания, задачи, функциональные подразделения.

  20. Инфекционный подвижный госпиталь: база формирования, задачи, функциональные подразделения.

  21. Специализированные противоэпидемические бригады: база создания, предназначение, организационно-штатная структура.

  22. Санитарно-эпидемиологические отряды и санитарно-эпидемиологические бригады: база создания, предназначение.

  23. Группы эпидемиологической разведки: база формирования, задачи, состав, оснащение и возможности.

  24. Подготовка и укомплектование кадрами формирований МСГО. Подготовка специалистов дефицитных специальностей.

  1. Ядерное оружие и его поражающие факторы.

Краткая характеристика очага ядерного поражения.

Ядерным оружием называются боеприпасы (боевые головки ракет и торпед, ядерные бомбы, артиллерийские снаряды, глубинные бомбы, мины, фугасы и др.), поражающее дейст-вие которых основано на использовании внутриядерной энергии, высвобождающейся при взрывных ядерных реакциях (деления, синтеза или того и другого одновременно). Для дос-тавки этого оружия к цели используются ракеты, авиация и другие средства.

Ядерные боеприпасы в зависимости от способа получения энергии подразделяются на три основных вида: собственно ядерные, в которых используется энергия, выделяющаяся в результате деления ядер тяжелых элементов (урана, плутония и др.); термоядерные, использующие энергию, выделяющуюся при синтезе легких элементов (водорода, дейтерия, трития и др.); нейтронные — разновидность боеприпасов с термоядерным зарядом малой мощности, отличающимся высоким выходом нейтронного излучения.

Ядерное оружие — самое мощное средство массового уничтожения. Впервые оно было применено США в конце второй мировой войны (август 1945) при атомной бомбардировке японских городов Хиросимы и Нагасаки. Более 215 тыс. чел. было убито и ранено в результате этого чудовищного по своей бессмысленности преступления. В массовом количестве ядерное оружие стало поступать на вооружение ряда государств с середины 50-х годов.

Поражающее действие ядерного взрыва зависит в основном от мощности боеприпаса и вида взрыва. Мощность ядерного взрыва измеряется тротиловым эквивалентом, то есть массой взрывчатого вещества тринитротолуола (тротила), энергия взрыва которого эквивалентна энер-гии взрыва данного ядерного боеприпаса. Тротиловый эквивалент измеряется в тоннах, тысячах тонн – килотоннах (кт) и миллионах тонн — мегатоннах (мт).

По мощности ядерные боеприпасы условно подразделяются на сверхмалые (мощность взрыва до 1 кт), малые (мощность взрыва 1–10 кт), средние (мощность взрыва 10–100 кт), круп-ные (мощность взрыва 100 кт — 1 мт) и сверхкрупные (мощность взрыва более 1 мт).

Ядерные взрывы могут осуществляться на поверхности земли (воды), под землей (водой) или в воздухе на различной высоте. В связи с этим принято различать следующие виды ядер-ных взрывов: наземный, подземный, подводный, надводный, воздушный и высотный.

Наземным ядерным взрывом называется взрыв на поверхности земли или на такой вы-соте от нее, когда светящаяся область касается грунта и имеет, как правило, форму полусферы. Увеличиваясь в размерах и остывая, огненный шар, отрываясь от поверхности земли, темнеет и превращается в клубящееся облако, которое, увлекая за собой столб пыли, через несколько ми-нут приобретает характерную форму.

Подземным ядерным взрывом называется взрыв, произведенный под землей. При под-земном взрыве вспышка и светящаяся область взрыва не наблюдаются, световое излучение полностью поглощается грунтом, а интенсивность проникающей радиации с увеличением глу-бины взрыва быстро снижается. Основным поражающим фактором подземного взрыва является ударная волна в грунте, напоминающая землетрясение и сильное радиоактивное загрязнение в районе взрыва.

Подводным ядерным взрывом называется взрыв, произведенный под водой на глубине, которая может колебаться в широких пределах. При подводном ядерном взрыве поднимается водяной столб с большим облаком в верхней части. Световое излучение практического значе-ния не имеет, проникающая радиация почти полностью поглощается толщей воды и водяными парами. Основным поражающим фактором является подводная ударная волна.

Надводный взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровожда-ется теми же поражающими факторами. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана.

Воздушным ядерным взрывом называется взрыв, при котором светящаяся область не касается поверхности земли. Высота воздушных взрывов в зависимости от мощности ядерных боеприпасов может колебаться от сотен метров до нескольких километров. Воздушный взрыв сопровождается яркой вспышкой, вслед за которой образуется огненный шар, быстро увеличи-вающийся в размерах и поднимающийся вверх.

Высотным ядерным взрывом называется взрыв выше границы тропосферы. Наимень-шая высота взрыва условно принимается равной 10 км. Высотный взрыв применяется для по-ражения воздушных и космических целей. Пылевой столб и облако пыли не образуются, а сле-довательно, и радиоактивное загрязнение отсутствует.

Центром взрыва называют точку, в которой происходит вспышка или находится центр огневого шара.

Эпицентром взрыва называется проекция центра взрыва на земле.

К поражающим факторам ядерного взрыва относятся: ударная волна, световое излучение, проникающая радиация (ионизирующее излучение), радиоактивное загрязнение местности, электромагнитный импульс и сейсмические (гравитационные) волны.

Ударная волна — наиболее мощный поражающий фактор ядерного взрыва. На ее обра-зование при взрывах боеприпасов среднего и крупного калибров расходуется около 50% всей энергии взрыва. Она представляет собой зону резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. С увеличением расстояния скорость быстро падает, а волна ослабевает. Источником возникновения ударной волны является высокое давление в центре взрыва, достигающее миллиардов атмосфер. Наибольшее давление возникает на передней границе зоны сжатия, которую принято называть фронтом ударной волны.

Поражающее действие ударной волны определяется избыточным давлением, то есть раз-ностью между нормальным атмосферным давлением и максимальным давлением во фронте ударной волны. Оно измеряется в килопаскалях (кПа) или килограммах — силы на 1 см2 (кгс/см2).

Ударная волна может нанести незащищенным людям травматические поражения, конту-зии или быть причиной их гибели. Поражения могут быть непосредственными или косвенными.

Непосредственное поражение ударной волной возникает в результате воздействия избы-точного давления и скорости напора воздуха, то есть появляется зона сжатия, за которой следу-ет зона разряжения. Ввиду небольших размеров тела человека ударная волна почти мгновенно охватывает его и подвергает сильному сжатию.

Косвенные поражения люди могут получить в результате ударов обломками разрушенных зданий и сооружений, осколками стекла, камнями, деревьями и другими предметами, летящими с большой скоростью.

Воздействуя на людей, ударная волна вызывает травмы различной тяжести:

 легкие поражения возникают при избыточном давлении 20–40 кПа (0,2–0,4 кгс/см2). Они характеризуются скоропреходящими нарушениями функций орга-низма (звон в ушах, головокружение, головная боль). Возможны вывихи, ушибы;

 поражения средней тяжести возникают при избыточном давлении 40–60 кПа (0,4-0,6 кгс/см2). При этом могут быть контузии, повреждения органов слуха, кровоте-чения из ушей и носа, переломы и вывихи;

 тяжелые поражения возможны при избыточном давлении 60–100 кПа (0,6–1,0 кгс/см2). Они характеризуются сильными контузиями всего организма, потерей сознания, множественными травмами, переломами, кровотечениями из носа, ушей; возможны повреждения внутренних органов и внутренние кровотечения;

 крайне тяжелые поражения возникают при избыточном давлении более 100 кПа (1 кгс/см ).

Отмечаются разрывы внутренних органов, переломы, внутренние кровотечения, сотрясе-ние мозга, длительная потеря сознания. Разрывы наблюдаются в органах, содержащих большое количество крови (печень, селезенка, почки), наполненных жидкостью (желудочки головного мозга, мочевой и желчный пузыри).

Эти травмы могут привести к смертельному исходу.

Световое излучение представляет собой поток видимых инфракрасных и ультрафиолето-вых лучей, исходящих от светящейся области, состоящей из продуктов ядерного взрыва и воз-духа, разогретых до нескольких тысяч градусов. На его образование расходуется 30–35% всей энергии взрыва боеприпасов среднего калибра. Продолжительность светового излучения зави-сит от мощности и вида взрыва и может продолжаться до десяти секунд.

Наибольшим поражающим действием обладает инфракрасное излучение. Основным па-раметром, характеризующим световое излучение, является световой импульс, то есть количест-во световой энергии, падающей на 1 см2 (1 м2) поверхности перпендикулярно направлению распространения светового излучения за время свечения. Световой импульс измеряется в кало-риях на 1 см2 (кал/см ) или килоджоулях на 1 м2 (кДж/м2) поверхности24.

Световое излучение ядерного взрыва при непосредственном воздействии вызывает ожоги сетчатки глаз. Возможны вторичные ожоги, возникающие от пламени горящих зданий, сооружений, растительности.

В городах Хиросима и Нагасаки примерно 50% всех смертельных случаев было вызвано ожогами, из них 20–30% — непосредственно световым излучением и 70–80% — ожогами от пожаров.

В зависимости от величины светового импульса различают четыре степени ожога: ожог I степени вызывает световой импульс величиной 100–200 кДж/м2 (2–6 кал/см2); II — 200–400 кДж/м2 (6–12 кал/см2); III — 400–600 кДж/м2 (12–18 кал/см2); IV степени — более 600 кДж/м2 (более 18 кал/см2).

От воздействия светового излучения предохраняют защитные и другие сооружения, соз-дающие экран.

Проникающая радиация (ионизирующее излучение) представляет собой мощный поток -лучей и нейтронов, выделяющихся в момент ядерного взрыва. На ее долю расходуется около 5% общей энергии ядерного взрыва. Поражающее действие у-лучей продолжается около 15 с, а нейтронов — в течение долей секунды.

Нейтроны и -лучи обладают большой проникающей способностью. В результате воздей-ствия проникающей радиации ядерного взрыва у человека может развиться лучевая болезнь. В зависимости от поглощенной дозы различают четыре степени тяжести лучевой болезни. При однократном облучении в дозе 1–2 Гр развивается лучевая болезнь I степени (легкая форма), при облучении в дозе 2–4 Гр — II (средней тяжести), в дозе 4–6 Гр — III (тяжелая форма) и в дозе более 6 Гр — IV степени (крайне тяжелая форма).

Радиоактивное загрязнение местности, воды и воздуха возникает в результате выпаде-ния радиоактивных веществ (РВ) из облака ядерного взрыва.

На долю радиоактивного загрязнения приходится до 10–15% всей энергии наземного ядерного взрыва боеприпасов среднего и крупного калибров.

Основные источники радиоактивности при ядерных взрывах: продукты деления веществ, составляющих ядерное горючее (200 радиоактивных изотопов 36 химических элементов); наве-денная активность, возникающая в результате воздействия потока нейтронов ядерного взрыва на некоторые химические элементы, входящие в состав грунта (натрий, кремний и др.); некото-рая часть ядерного горючего, которая не участвует в реакции деления и попадает в виде мель-чайших частиц в продукты взрыва.

Радиоактивное загрязнение местности имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрыва. К ним относятся: большая площадь поражения — тысячи и десятки тысяч квадратных километров; длительность сохранения поражающего действия — дни, недели, а иногда и месяцы (годы); невозможность обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков, без использования специальных приборов.

Радиоактивное загрязнение наиболее выражено при наземном и низком воздушном взры-вах, когда огненный шар соприкасается с землей и в образующееся грибовидное облако вовле-кается огромное количество пыли. При этом грунт, поднятый с облаком, перемешивается с РВ и происходит их выпадение как в районе взрыва, так и по пути движения облака с образованием так называемого радиоактивного следа.

Местность считается загрязненной РВ при уровнях радиации 0,5 Р/ч и выше. Уровень ра-диации на загрязненной территории постоянно снижается за счет превра¬щения короткоживу-щих изотопов в нерадиоактивные вещества. При семикратном увеличении времени, прошедшего после взрыва, уровень радиации снижается в 10 раз. Особенно быстро уровень радиации падает в первые часы и дни после взрыва, а затем остаются вещества с длительным периодом полураспада, и снижение уровня радиации происходит медленно. Так, если через 1 ч после взрыва уровень радиации принять за исходный, то через 7 ч он снизится в 10 раз, через 49 ч (около 2 сут) в 100, а через 14 сут — в 1000 раз по сравнению с первоначальным.

Поражающее действие РВ на людей обусловлено двумя факторами: внешним воздействи-ем у-излучения и р-частицами (при попадании их на кожу или внутрь организма).

Ведущим радиационным фактором поражения является внешнее у-облучение, приводя-щее к развитию острой формы лучевой болезни.

Электромагнитный импульс обусловливает возникновение электрических и магнитных полей в результате воздействия у-излучения ядерного взрыва на атомы объектов окружающей среды и образования потока электронов и положительно заряженных ионов. Воздействие элек-тромагнитного импульса может привести к выведению из строя чувствительных электронных и электрических элементов, имеющих большие антенны, к повреждению полупроводниковых, вакуумных приборов, конденсаторов, а также к серьезным нарушениям работы цифровых и контрольных устройств. Таким образом, при воздействии электромагнитного импульса может быть нарушена работа аппаратов связи, электронно-вычислительной техники и т.п., что отрицательно скажется на работе штабов и других органов управления. Электромагнитный импульс не оказывает выраженного поражающего действия на людей.

Особенности действия нейтронного оружия. Разновидностью оружия, основанного на высвобождении внутриядерной энергии, является так называемое нейтронное оружие. Этим названием подчеркивается основное его боевое свойство — вызывать поражения преимущественно за счет действия нейтронного излучения.

В нейтронных боеприпасах малого и сверхмалого калибров действие ударной волны и светового излучения ограничено радиусом всего 140–300 м, а действие нейтронного излучения доведено до такого же уровня, как и при взрыве термоядерных боеприпасов большой мощно-сти, или даже несколько повышено (в условиях низкого воздушного взрыва).

В некоторых нейтронных боеприпасах до 80% энергии может уноситься проникающей радиацией и лишь 20% расходоваться на ударную волну, световое излучение и радиоактивное загрязнение местности. Люди будут погибать от действия потока нейтронов (80–90%) и у-лучей (10-20%) или получать тяжелую форму острой лучевой болезни.