
- •Глава I
- •§ 1. Электростатическое поле проводников
- •§ 2. Энергия электростатического поля проводников
- •§ 3. Методы решения электростатических задач
- •2 Л. Д. Ландау, е. М. Лифшиц
- •§ 4. Проводящий эллипсоид
- •§ 5. Силы, действующие на проводник
- •Глава II
- •§ 6. Электростатическое поле в диэлектриках
- •§ 7. Диэлектрическая проницаемость
- •§ 8. Диэлектрический эллипсоид
- •§ 9. Диэлектрическая проницаемость смеси
- •§ 10. Термодинамические соотношения для диэлектриков в электрическом поле
- •§ 11. Полная свободная энергия диэлектрического тела
- •§12. Электрострикция изотропных диэлектриков
- •§ 13. Диэлектрические свойства кристаллов
- •§ 14. Положительность диэлектрической восприимчивости
- •§ 15. Электрические силы в жидком диэлектрике
- •§ 16. Электрические силы в твердых телах
- •§17. Пьезоэлектрики
- •§ 18. Термодинамические неравенства
- •§ 19. Сегнетоэлектрики
- •§ 20. Несобственные сегнетоэлектрики
- •Глава III
- •§ 21. Плотность тока и проводимость
- •§ 22. Эффект Холла
- •§ 23. Контактная разность потенциалов
- •§ 24. Гальванический элемент
- •§ 25. Электрокапиллярность
- •§ 26. Термоэлектрические явления
- •§ 27. Термогальваномагнитные явления
- •§ 28. Диффузионно-электрические явления
- •Глава IV
- •§ 29. Постоянное магнитное поле
- •§ 30. Магнитное поле постоянных токов
- •§ 31. Термодинамические соотношения в магнитном поле
- •§ 32. Полная свободная энергия магнетика
- •§ 33. Энергия системы токов
- •§ 34. Самоиндукция линейных проводников
- •§ 35. Силы в магнитном поле
- •§ 36. Гиромагнитные явления
- •Глава V
- •§ 37. Магнитная симметрия кристаллов
- •§ 38. Магнитные классы и пространственные группы
- •§ 39. Ферромагнетик вблизи точки Кюри
- •§ 40. Энергия магнитной анизотропии
- •§ 41. Кривая намагничения ферромагнетиков
- •§ 42. Магнитострикция ферромагнетиков
- •§ 43. Поверхностное натяжение доменной стенки
- •§ 44. Доменная структура ферромагнетиков
- •§ 45. Однодоменные частицы
- •§ 46. Ориентационные переходы
- •§ 47. Флуктуации в ферромагнетике
- •§ 48. Антиферромагнетик вблизи точки Кюри
- •§ 49. Бикритическая точка антиферромагнетика
- •§ 50. Слабый ферромагнетизм
- •§ 51. Пьезомагнетизм и магнитоэлектрический эффект
- •§ 52. Геликоидальная магнитная структура
- •Глава VI
- •§ 53. Магнитные свойства сверхпроводников
- •§ 54. Сверхпроводящий ток
- •§ 55. Критическое поле
- •2) Мы приводим здесь вычисления с большей точностью, чем это обычно требуется, имея в виду выявить более ясно взаимоотношение между различными термодинамическими величинами.
- •§ 56. Промежуточное состояние
- •§ 57. Структура промежуточного состояния
- •Глава VII
- •§ 58. Уравнения квазистационарного поля
- •§ 59. Глубина проникновения магнитного поля в проводник
- •VaRe{a6*}.
- •§ 60. Скин-эффект
- •§ 61. Комплексное сопротивление
- •§ 62. Емкость в цепи квазистационарного тока
- •§ 63. Движение проводника в магнитном поле
- •0 Из этой формулы видно, что дополнительное тепло, выделяющееся (в течение времени 60 в проводнике при его движении в магнитном поле, есть
- •§ 64. Возбуждение тока ускорением
- •Глава VIII
- •§ 65. Уравнения движения жидкости в магнитном поле
- •§65] Уравнения движения жидкости в магнитном поле 315
- •§66] Диссипативные процессы в магнитной гидродинамике 317
- •§ 66. Диссипативные процессы в магнитной гидродинамике
- •§ 67. Магнитогидродинамическое течение между параллельными плоскостями
- •§ 68. Равновесные конфигурации
- •§ 69. Магнитогидродинамические волны
- •VX&0, Vytt—hjV4пр ,
- •§ 70. Условия на разрывах
- •§ 71. Тангенциальные и вращательные разрывы
- •§ 72. Ударные волны
- •§ 73. Условие эволюционности ударных волн
- •§ 74. Турбулентное динамо
- •Глава IX
- •§ 75. Уравнения поля в диэлектриках в отсутствие дисперсии
- •§ 76. Электродинамика движущихся диэлектриков
- •§ 77. Дисперсия диэлектрической проницаемости
- •§ 78. Диэлектрическая проницаемость при очень больших частотах
- •§ 79. Дисперсия магнитной проницаемости
- •§ 80. Энергия поля в диспергирующих средах
- •§ 81. Тензор напряжений в диспергирующих средах
- •§ 82. Аналитические свойства функции е(со)
- •§ 83. Плоская монохроматическая волна
- •§ 84. Прозрачные среды
- •Глава X
- •§ 85. Геометрическая оптика
- •§ 86. Отражение и преломление волн
- •§ 87. Поверхностный импеданс металлов
- •§ 88. Распространение волн в неоднородной среде
- •§ 89. Принцип взаимности
- •§ 90. Электромагнитные колебания в полых резонаторах
- •§ 91. Распространение электромагнитных волн в волноводах
- •§ 92. Рассеяние электромагнитных волн на малых частицах
- •§ 93. Поглощение электромагнитных волн на малых частицах
- •§ 94. Дифракция на клине
- •§ 95. Дифракция на плоском экране
- •Глава XI
- •§ 96. Диэлектрическая проницаемость кристаллов
- •§ 97. Плоская волна в анизотропной среде
- •§ 98. Оптические свойства одноосных кристаллов
- •§ 99. Двухосные кристаллы
- •§ 100. Двойное преломление в электрическом поле
- •§ 101. Магнитооптические эффекты
- •§ 102. Динамооптические явления
- •Pfffi р 1
- •Глава XII
- •§ 103. Пространственная дисперсия
- •§ 104. Естественная оптическая активность
- •§ 105. Пространственная дисперсия в оптически неактивных средах
- •§ 106. Пространственная дисперсия вблизи линии поглощения
- •Глава XIII
- •§ 107. Преобразование частот в нелинейных средах
- •§ 108. Нелинейная проницаемость
- •§ 109. Самофокусировка
- •§111. Сильные электромагнитные волны
- •§112. Вынужденное комбинационное рассеяние
- •Глава XIV
- •§ 113. Ионизационные потери быстрых частиц в веществе. Нерелятивистский случай
- •§ 114. Ионизационные потери быстрых частиц в веществе. Релятивистский случай
- •§ 115. Излучение Черенкова
- •§ 116. Переходное излучение
- •Глава XV
- •§ 117. Общая теория рассеяния в изотропных средах
- •§ 118. Принцип детального равновесия при рассеянии
- •§ 119. Рассеяние с малым изменением частоты
- •§ 120. Рэлеевское рассеяние в газах и жидкостях
- •§ 121. Критическая опалесценция
- •§ 122. Рассеяние в жидких кристаллах
- •§ 123. Рассеяние в аморфных твердых телах
- •§123] Рассеяние в аморфных твердых телах 595
- •§ 124. Общая теория дифракции рентгеновых лучей
- •§ 125. Интегральная интенсивность
- •§ 126] Диффузное тепловое рассеяние рентгеновых лучей
- •§ 126. Диффузное тепловое рассеяние рентгеновых лучей
- •§ 127. Температурная зависимость сечения дифракции
Глава II
ЭЛЕКТРОСТАТИКА ДИЭЛЕКТРИКОВ
§ 6. Электростатическое поле в диэлектриках
Перейдем теперь к изучению постоянного электрического поля в другой категории материальных сред—в диэлектриках.
Основное свойство диэлектриков заключается в невозможности протекания в них постоянного тока. Поэтому, в отличие от проводников, напряженность постоянного электрического поля в диэлектриках отнюдь не должна быть равной нулю, и мы должны получить уравнения, которыми это поле описывается. Одно из них получается путем усреднения уравнения (1,3) и по-прежнему гласит:
rotE-0. (6,1)
Второе же получается усреднением уравнения dive = 4np:
divE-=4np. (6,2)
Предположим, что внутрь вещества диэлектрика не внесено извне никаких посторонних зарядов; это есть наиболее обычный и важный случай. Тогда полный заряд во всем объеме диэлектрика остается равным нулю и после внесения его в электрическое поле:
[pdV = 0.
Это интегральное соотношение, которое должно выполняться для тела любой формы, означает, что средняя плотность зарядов может быть написана в виде дивергенции некоторого вектора, который принято обозначать как —Р:
р = — div Р, (6,3)
причем вне тела Р = 0. Действительно, интегрируя по объему, ограниченному поверхностью, охватывающей тело и проходящей везде вне его, получим
[ pdV = — J divPdV=—<fPdf = Q.
Величина Р называется вектором диэлектрической поляризации (или просто поляризации) тела; диэлектрик, в котором Р отлично от нуля, называют поляризованным. Наряду с объемной плотностью (6,3), вектор Р определяет также и поверхностную плотность о зарядов, распределенных по поверхности поляризованного
диэлектрика. Если проинтегрировать формулу (6,3) по элементу объема, заключенному между двумя бесконечно близкими единичными площадками, примыкающими с обеих сторон к поверхности диэлектрика, и учесть, что на наружной площалке Р = 0, то мы получим (ср. вывод формулы (1,9)):
° = Рп, (М)
где Рп—-составляющая вектора Р по внешней нормали к поверхности.
Для выяснения физического смысла самой величины Р рассмотрим полный дипольный момент всех внутренних зарядов в диэлектрике; в отличие от полного заряда, эта величина не должна быть равной нулю. По определению дипольного момента это есть интеграл
\ rpdV.
Подставив р в виде (6,3) и снова интегрируя по объему, выходящему за пределы тела, получим
\rpdV = — J rdivPd]/ = — fr{dt Р) + $ (PV)rdV.
Интеграл по поверхности исчезает, а во втором имеем (Pv)r = P, так что
\rpdV=\PdV. (6,5)
Таким образом, вектор поляризации представляет собой дипольный момент (или, как говорят, электрический момент) единицы объема диэлектрика1).
Подставив (6,3) в (6,2), получим второе уравнение электростатического поля в виде
divD = 0, (6,6)
где введена новая величина D, определяемая как
D = E + 4nP (6,7)
и называемая электрической индукцией. Уравнение (6,6) было получено путем усреднения плотности зарядов, входящих в состав диэлектрика. Если же в диэлектрик внесены извне посторонние по отношению к его веществу заряды (мы будем называть их сторонними), то к правой части уравнения (6,6) должна быть добавлена их плотность:
*)
Следует заметить, что соотношение (6,3)
внутри диэлектрика и условие Р
= 0
вне его сами по себе еще не определяют
величину Р
однозначным
образом; в области внутри диэлектрика
можно прибавить к Р
любой
вектор вида rot
f.
Лишь
установление связи с дипольным моментом
окончательно определяет Р.
На поверхности раздела двух различных диэлектриков должны выполняться определенные граничные условия. Одно из этих условий является следствием уравнения rotE=0. Если поверхность раздела однородна по своим физическим свойствам1), то это условие требует непрерывности тангенциальной составляющей напряженности поля:
ЕП = Е<2 (6,9)
(ср. вывод условия (1,7)). Второе же условие следует из уравнения divD = 0 и требует непрерывности нормальной к поверхности составляющей индукции:
Dnl = Dn2. (6,10)
Действительно, скачок нормальной составляющей Dn = Dz означал бы обращение производной dDJdz (а с нею и div D) в бесконечность.
На границе между диэлектриком и проводником Ef = 0, а условие для нормальной компоненты получается из (6,8):
Е, = 0, Я„ = 4яает, (6,11)
где аС1 — плотность зарядов на поверхности проводника (ср. •(1,8-9)).