
- •Глава I
- •§ 1. Электростатическое поле проводников
- •§ 2. Энергия электростатического поля проводников
- •§ 3. Методы решения электростатических задач
- •2 Л. Д. Ландау, е. М. Лифшиц
- •§ 4. Проводящий эллипсоид
- •§ 5. Силы, действующие на проводник
- •Глава II
- •§ 6. Электростатическое поле в диэлектриках
- •§ 7. Диэлектрическая проницаемость
- •§ 8. Диэлектрический эллипсоид
- •§ 9. Диэлектрическая проницаемость смеси
- •§ 10. Термодинамические соотношения для диэлектриков в электрическом поле
- •§ 11. Полная свободная энергия диэлектрического тела
- •§12. Электрострикция изотропных диэлектриков
- •§ 13. Диэлектрические свойства кристаллов
- •§ 14. Положительность диэлектрической восприимчивости
- •§ 15. Электрические силы в жидком диэлектрике
- •§ 16. Электрические силы в твердых телах
- •§17. Пьезоэлектрики
- •§ 18. Термодинамические неравенства
- •§ 19. Сегнетоэлектрики
- •§ 20. Несобственные сегнетоэлектрики
- •Глава III
- •§ 21. Плотность тока и проводимость
- •§ 22. Эффект Холла
- •§ 23. Контактная разность потенциалов
- •§ 24. Гальванический элемент
- •§ 25. Электрокапиллярность
- •§ 26. Термоэлектрические явления
- •§ 27. Термогальваномагнитные явления
- •§ 28. Диффузионно-электрические явления
- •Глава IV
- •§ 29. Постоянное магнитное поле
- •§ 30. Магнитное поле постоянных токов
- •§ 31. Термодинамические соотношения в магнитном поле
- •§ 32. Полная свободная энергия магнетика
- •§ 33. Энергия системы токов
- •§ 34. Самоиндукция линейных проводников
- •§ 35. Силы в магнитном поле
- •§ 36. Гиромагнитные явления
- •Глава V
- •§ 37. Магнитная симметрия кристаллов
- •§ 38. Магнитные классы и пространственные группы
- •§ 39. Ферромагнетик вблизи точки Кюри
- •§ 40. Энергия магнитной анизотропии
- •§ 41. Кривая намагничения ферромагнетиков
- •§ 42. Магнитострикция ферромагнетиков
- •§ 43. Поверхностное натяжение доменной стенки
- •§ 44. Доменная структура ферромагнетиков
- •§ 45. Однодоменные частицы
- •§ 46. Ориентационные переходы
- •§ 47. Флуктуации в ферромагнетике
- •§ 48. Антиферромагнетик вблизи точки Кюри
- •§ 49. Бикритическая точка антиферромагнетика
- •§ 50. Слабый ферромагнетизм
- •§ 51. Пьезомагнетизм и магнитоэлектрический эффект
- •§ 52. Геликоидальная магнитная структура
- •Глава VI
- •§ 53. Магнитные свойства сверхпроводников
- •§ 54. Сверхпроводящий ток
- •§ 55. Критическое поле
- •2) Мы приводим здесь вычисления с большей точностью, чем это обычно требуется, имея в виду выявить более ясно взаимоотношение между различными термодинамическими величинами.
- •§ 56. Промежуточное состояние
- •§ 57. Структура промежуточного состояния
- •Глава VII
- •§ 58. Уравнения квазистационарного поля
- •§ 59. Глубина проникновения магнитного поля в проводник
- •VaRe{a6*}.
- •§ 60. Скин-эффект
- •§ 61. Комплексное сопротивление
- •§ 62. Емкость в цепи квазистационарного тока
- •§ 63. Движение проводника в магнитном поле
- •0 Из этой формулы видно, что дополнительное тепло, выделяющееся (в течение времени 60 в проводнике при его движении в магнитном поле, есть
- •§ 64. Возбуждение тока ускорением
- •Глава VIII
- •§ 65. Уравнения движения жидкости в магнитном поле
- •§65] Уравнения движения жидкости в магнитном поле 315
- •§66] Диссипативные процессы в магнитной гидродинамике 317
- •§ 66. Диссипативные процессы в магнитной гидродинамике
- •§ 67. Магнитогидродинамическое течение между параллельными плоскостями
- •§ 68. Равновесные конфигурации
- •§ 69. Магнитогидродинамические волны
- •VX&0, Vytt—hjV4пр ,
- •§ 70. Условия на разрывах
- •§ 71. Тангенциальные и вращательные разрывы
- •§ 72. Ударные волны
- •§ 73. Условие эволюционности ударных волн
- •§ 74. Турбулентное динамо
- •Глава IX
- •§ 75. Уравнения поля в диэлектриках в отсутствие дисперсии
- •§ 76. Электродинамика движущихся диэлектриков
- •§ 77. Дисперсия диэлектрической проницаемости
- •§ 78. Диэлектрическая проницаемость при очень больших частотах
- •§ 79. Дисперсия магнитной проницаемости
- •§ 80. Энергия поля в диспергирующих средах
- •§ 81. Тензор напряжений в диспергирующих средах
- •§ 82. Аналитические свойства функции е(со)
- •§ 83. Плоская монохроматическая волна
- •§ 84. Прозрачные среды
- •Глава X
- •§ 85. Геометрическая оптика
- •§ 86. Отражение и преломление волн
- •§ 87. Поверхностный импеданс металлов
- •§ 88. Распространение волн в неоднородной среде
- •§ 89. Принцип взаимности
- •§ 90. Электромагнитные колебания в полых резонаторах
- •§ 91. Распространение электромагнитных волн в волноводах
- •§ 92. Рассеяние электромагнитных волн на малых частицах
- •§ 93. Поглощение электромагнитных волн на малых частицах
- •§ 94. Дифракция на клине
- •§ 95. Дифракция на плоском экране
- •Глава XI
- •§ 96. Диэлектрическая проницаемость кристаллов
- •§ 97. Плоская волна в анизотропной среде
- •§ 98. Оптические свойства одноосных кристаллов
- •§ 99. Двухосные кристаллы
- •§ 100. Двойное преломление в электрическом поле
- •§ 101. Магнитооптические эффекты
- •§ 102. Динамооптические явления
- •Pfffi р 1
- •Глава XII
- •§ 103. Пространственная дисперсия
- •§ 104. Естественная оптическая активность
- •§ 105. Пространственная дисперсия в оптически неактивных средах
- •§ 106. Пространственная дисперсия вблизи линии поглощения
- •Глава XIII
- •§ 107. Преобразование частот в нелинейных средах
- •§ 108. Нелинейная проницаемость
- •§ 109. Самофокусировка
- •§111. Сильные электромагнитные волны
- •§112. Вынужденное комбинационное рассеяние
- •Глава XIV
- •§ 113. Ионизационные потери быстрых частиц в веществе. Нерелятивистский случай
- •§ 114. Ионизационные потери быстрых частиц в веществе. Релятивистский случай
- •§ 115. Излучение Черенкова
- •§ 116. Переходное излучение
- •Глава XV
- •§ 117. Общая теория рассеяния в изотропных средах
- •§ 118. Принцип детального равновесия при рассеянии
- •§ 119. Рассеяние с малым изменением частоты
- •§ 120. Рэлеевское рассеяние в газах и жидкостях
- •§ 121. Критическая опалесценция
- •§ 122. Рассеяние в жидких кристаллах
- •§ 123. Рассеяние в аморфных твердых телах
- •§123] Рассеяние в аморфных твердых телах 595
- •§ 124. Общая теория дифракции рентгеновых лучей
- •§ 125. Интегральная интенсивность
- •§ 126] Диффузное тепловое рассеяние рентгеновых лучей
- •§ 126. Диффузное тепловое рассеяние рентгеновых лучей
- •§ 127. Температурная зависимость сечения дифракции
§ 63. Движение проводника в магнитном поле
Во всем предыдущем изложении молчаливо подразумевалось, что проводники в электромагнитном поле покоятся (относительно системы отсчета К, в которой определены все величины Е, Н и т. д.). В частности, и связь j = стЕ между током и полем справедлива, вообще говоря, лишь для неподвижных проводников.
Для определения связи между током и полем в движущемся проводнике перейдем от системы отсчета К к другой системе, К', в которой проводник (или его отдельный участок) в данный момент времени покоится. В этой системе имеем j = crE', где Е'—- напряженность электрического поля в К'- Но согласно известной формуле преобразования полей Е' выражается через поле в системе К посредством *)
E' = E+-f[vB],
(63,1)
где
v—скорость
системы К'
относительно
системы К,
т.
е. в данном случае—скорость проводника
(которую мы предполагаем, естественно,
малой по сравнению со скоростью света).
Таким образом, находим
(63,2)
Это
и есть формула, определяющая связь
между током и полем в движущихся
проводниках. По поводу ее вывода надо
сделать еще следующее замечание.
Произведя переход от одной системы
отсчета к другой, мы преобразовали
поле, но оставили величину j
неизменной.
Преобразование плотности тока привело
бы, при v<iic,
к
появлению добавочных членов высшего
порядка малости. В формуле же (63,2) второй
член, появившийся в результате
преобразования поля, вообще говоря,
не мал по сравнению с первым, хотя
и содержит множитель v/c.
Так,
если
*)
См. II § 24. Микроскопические значения
напряженностей электрического и
магнитного полей заменены нх усредненными
значениями е = Е, h
=
B.
электрическое поле само обусловлено электромагнитной индукцией от переменного магнитного поля, то его порядок величины содержит лишний множитель 1,с по сравнению с магнитным полем.
Диссипация энергии в проводнике при протекании в нем заданного тока не может, разумеется, зависеть от движения проводника. Поэтому плотность выделения (в 1 с) джоулева тепла в движущемся проводнике, выраженная через плотность тока, дается той же формулой /-а, как и в неподвижном проводнике. Но вместо произведения jE теперь имеем1)
j i'e -i- ; ; vBj .
а 1 \ с 1 1 /
Таким образом, в движущемся проводнике сумма E-f-[vB]c играет роль «эффективной» напряженности электрического поля, создающей ток проводимости. Поэтому электродвижущая сила, действующая в замкнутой линейной цепи С, дается интегралом
<В^-§ [Е +4[vBJ \d\. (63,3)
с ''
Преобразуем его след\'ющим образом. Согласно уравнению
Максвелла rot Е — =- имеем
с dt
& Е dl - \ rot Е df - - - 4т f В di,
с s s
или. обозначив посредством Ф магнитный поток через поверхность S, опирающуюся на контур тока,
о с V dt
Производная по времени с индексом v = 0 означает изменение магнитного потока, обусловленное изменением во времени самого магнитного поля при неизменном положении контура С.
Во втором же члене пишем \----dadt, где du — бесконечно малое смещение элемента контура. Тогда
<f [vB]dl
r'[rfub]rf! 3B(/f
' j dt dt
с