
- •Химический состав углеродистых сталей
- •Свойства:
- •Применение качественных углеродистых сталей:
- •Классификация и маркировка углеродистых сталей:
- •Состав:
- •Классификация:
- •Свойства:
- •Применение:
- •Строение чугуна:
- •Свойства:
- •Применение:
- •Состав:
- •Классификация:
- •Свойства:
- •Применение:
- •Состав:
- •Классификация:
- •Свойства:
- •Применение:
- •Состав:
- •Свойства:
- •Применение:
- •Состав:
- •Свойства:
- •Применение:
- •Борьба с коррозией
- •Сферы применения пластмассы:
- •12.Опишите неметаллические конструкционные материалы. Охарактеризуйте резину, Поясните ее состав, получение, классификацию, свойства, применение.
- •Состав:
- •Получение:
- •Классификация:
- •Свойства:
- •Применение:
- •Состав:
- •Получение:
- •Свойства:
- •Применение:
- •14.Опишите древесину. Поясните ее свойства и применение в пищевой промышленности.
- •Свойства:
- •Резьбовое соединение:
- •Шпо́ночное соедине́ние:
- •Шлицевое соединение:
- •Общие сведения о крепёжных изделиях, применяемых в машиностроении
- •Применение:
- •Применение:
- •Применение:
- •17.Опишите механическую передачу "винт – гайка", поясните ее назначение, устройство, область применения, преимущества и недостатки.
- •Назначение:
- •Устройство:
- •Область применения:
- •Преимущества и недостатки:
- •Устройство:
- •Применение:
- •Классификация:
- •Преимущества и недостатки:
- •Условное изображение в кинематике:
- •Устройство:
- •Применение:
- •Классификация:
- •Преимущества и недостатки:
- •Условное изображение в кинематике:
- •Устройство:
- •Применение:
- •Классификация:
- •Преимущества и недостатки:
- •Условное изображение в кинематике:
- •Устройство:
- •Применение:
- •Классификация:
- •Преимущества и недостатки:
- •Условное изображение в кинематике:
- •Устройство:
- •Применение:
- •Классификация:
- •Преимущества и недостатки:
- •Условное изображение в кинематике:
- •Классификация валов и осей:
- •Область применения валов и окей:
- •Классификация муфты:
- •Область применения муфты:
- •Назначение:
- •Устройство:
- •Применения:
- •Назначение:
- •Классификация:
- •Устройство:
- •Применение:
- •Кривошипно-шатунный механизм (кшм)
- •Назначение:
- •Устройство:
- •Принцип работы:
- •Область применения:
- •Кулачко́вый механи́зм
- •Назначение:
- •Устройство:
- •Принцип работы:
- •Область применения:
1.Перечислите основные свойства металлов.
Характерные свойства металлов:
- Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
- Хорошая электропроводность
- Возможность лёгкой механической обработки (см.: пластичность; однако некоторые металлы, например германий и висмут, непластичны)
- Высокая плотность (обычно металлы тяжелее неметаллов)
- Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
- Большая теплопроводность
- В реакциях чаще всего являются восстановителями
Физические свойства металлов:
Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.
Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.
В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.
Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Гладкая поверхность металлов отражает большой процент света — это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке. Наиболее хорошо отражают свет алюминий, серебро и палладий — из этих металлов изготовляют зеркала.
Для изготовления зеркал иногда применяется и родий, несмотря на его исключительно высокую цену: благодаря значительно большей, чем у серебра или даже палладия, твёрдости и химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный.
Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
Химические свойства металлов:
На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны).
Реакции с простыми веществами:
С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:
оксид лития
пероксид натрия
K + C2 = KC2 надпероксид калия
Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:
Na2O2 + 2Na = 2Na2o
Со средними и малоактивными металлами реакция происходит при нагревании:
2Hg + O2 = 2HgO
С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:
6Li + N2 = 2Li3N
При нагревании:
2Al + N2 = 2AlN
3Ca + N2 = Ca3N2
С серой реагируют все металлы, кроме золота и платины:
Железо взаимодействует с серой при нагревании, образуя сульфид:
Fe + S = FeS
С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
2Na+H2=2NaH
Mg+H2=MgH2
С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.
2Na+2C=Na2C2
Na2C2+2H2O=2NaOH+C2H2
2.Опишите углеродистые стали. Поясните химический состав, свойства, применение, классификацию.
Углеродистой сталью называется инструментальная или конструкционная сталь, не содержащая легирующих добавок. Углеродистая сталь подразделяется на низкоуглеродистую (до 0,25% углерода), среднеуглеродистую (от 0,25 до 0,6% углерода) и высокоуглеродистую (до 0,25% углерода).
От обычных сталей углеродистую сталь отличает меньшее содержание примесей, небольшое содержание кремния, магния и марганца. Углеродистая сталь отличается повышенной прочностью и высокой твердостью.
Наименование |
Состав (%) |
Сталь: |
C до 2, добавки Si, S, P, O, N до 1, остальное Fe |
Химический состав углеродистых сталей
Химический состав углеродистых сталей (низкоуглеродистых, среднеуглеродистых, высокоуглеродистых).
В сварке в зависимости от содержания углерода конструкционные углеродистые стали условно разделяют на три группы: низко-, средне- и высоко- углеродистые с содержанием соответственно до 0,25; 0,26...0,45 и 0,46...0,75 % С. Они широко применяются при производстве машиностроительных конструкций, работающих при температурах -40...+425оС. Технология сварки этих сталей различна. Даже для сталей одной марки в зависимости от ее плавочного состава и условий эксплуатации сварной конструкции технология сварки может существенно разниться. Углерод - это основной легирующий элемент в углеродистых конструкционных сталях, он определяет механические свойства углеродистых сталей. Повышение содержания углерода усложняет технологию сварки, затрудняет получение равнопрочного сварного соединения бeз дефектов. Углеродистые стали по качественному признаку разделяют на две группы: стали обыкновенного качества и качественные. По степени раскисления сталь обыкновенного качества обозначают следующим образом: кипящую - кп, полуспокойную - пс и спокойную - сп.
Кипящая сталь, содержащая ≤0,07 % Si, получается пpи неполном раскислении металла марганцем. Кипящая сталь характеризуется резко выраженной неравномерностью распределения серы и фосфора пo толщине проката. Местнaя повышенная концентрация серы может привеcти к образованию кристаллизационных трещин в околошовной зоне (ОШЗ) и шве. Кипящая сталь в околошовной зоне склоннa к старению, к переходу в хрупкое состояние пpи отрицательных температураx.
Спокойные стали получают пpи раскислении марганцем, алюминием, кремнием. Они содержат ≥0,12 % кремния; сера и фосфор распределены в них более равномерно, чем в кипящих углеродистых сталях. Спокойные стали менее склонны к старению, они слабее реагируют нa сварочный нагрев.
Полуспокойные стали пo склонности к старению занимает положение промежуточное между кипящими и спокойными сталями.
Сталь обыкновенного качества поставляют без термообработки в горячекатаном состоянии. Изготовленныe из неё конструкции такжe не подвергают последующей термообработке. Эти стали производят по ГОСТ 380-94, 4543-71,5520-79 и 5521-93.
Углеродистая сталь обыкновенного качества подразделяется на три группы в соответствии c ГОСТ 380-94:
- Углеродистая сталь группы А поставляется пo механическим свойствам и для производствa сварных конструкций нe используют (группа А в обозначении стали нe указывается, например Ст3).
- Углеродистая сталь группы Б поставляется по химическому составу,
- Сталь группы В - пo химсоставу и механическим свойствам.
Свойства:
Свойства стали в значительной степени определяются тем, какие фазы образуются при сплавлении с легирующими элементами, в результате термической обработки. Основными структурными составляющими сталей являются феррит, аустенит, перлит, ледебурит, сорбит, троостит, бейнит и мартенсит. Легирующие элементы присутствуют в сталях в виде твердого раствора в железе, в виде карбидной фазы, в форме интерметаллидных соединений с железом, бором, азотом, кремнием и углеродом или между собой. Каждая структура определяется химическим составом и технологией стали, т.ж. зависят ее свойства. Обычно, сталь имеет плотность 7.6 -7.9 г/см. куб., временное сопротивление растяжению от 800 до 3000 МПа, относительное удлинение от 5 до 12 %, ударную вязкость от 10 до 160 Дж/см. кв.