
- •Физические основы электроники Электрофизические методы исследования полупроводников и полупроводниковых приборов
- •Введение в настоящем пособии излагаются основные темы дисциплин, связанных с основами работы полупроводниковых приборов.
- •Требования к подготовке, выполнению и защите работ
- •Тема 1. Приборы, используемые для проведения исследований полупроводниковых приборов
- •1.1. Автоматические мосты переменного тока
- •1.2. Осциллографы
- •1.3. Генераторы
- •Тема 2. Проводимость полупроводников и металлов лабораторная работа № 2.1
- •2.1. Терморезисторы: термисторы и позисторы
- •Подготовка к работе
- •Измерения и обработка результатов
- •Отчетные материалы
- •Лабораторная работа № 2.2
- •2.2. Общие сведения
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Подготовка к работе
- •2. Исследование вольтамперной характеристики варистора
- •7. Исследование зависимости сопротивления от температуры
- •Отчетные материалы
- •Лабораторная работа № 2.3
- •2.3. Определение типа носителей в полупроводниках
- •2.3.1. Метод термозонда
- •2.3.2. Метод Холла
- •2.3.3. Определение концентрации и подвижности носителей
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Определение типа носителей с помощью метода термозонда
- •1.1. Подготовка к работе
- •1.2. Определение типа носителей разных кристаллов
- •2. Исследования по методу Холла
- •2.1. Определение типа основных носителей в датчике Холла
- •2.3. Исследование вольтамперной характеристики датчика
- •2.4. Определение микропараметров кристалла датчика Холла
- •2.6. Определение зависимости эдс Холла от величины тока
- •2.9. Определение зависимости эдс Холла величины индукции в
- •Отчетные материалы
- •Тема 3. Полупродниковые диоды Лабораторная работа №3.1 ″Исследование полупроводниковых диодов″
- •3.1. Характеристики полупроводниковых диодов
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Начальные установки
- •2. Исследование вольтамперной характеристики диода при t0
- •2.1. Исследование прямой ветви вах диода д2
- •2.2. Исследование обратной ветви вах диода д2
- •3*. Исследование вах диодов различных типов
- •4. Исследование зависимости обратного тока диода от температуры
- •Отчетные материалы
- •Лабораторная работа № 3.2
- •3.2. Полупроводниковые стабилитроны и стабисторы
- •3.3. Описание стенда
- •Измерения и обработка результатов
- •2. Исследование вольтамперной характеристики стабилитрона при комнатной температуре
- •5. Исследование влияния температуры на напряжение Uст
- •Отчетные материалы
- •Лабораторная работа №3.3
- •3.4. Характеристики светодиодов
- •3.4.1. Управляемые источника света. Светодиоды
- •3.4.2. Строение светодиодов
- •3.4.3. Общие сведения об обозначении светодиодов
- •3.4.4. Особенности лабораторной установки
- •Отчетные материалы
- •Лабораторная работа № 3.4
- •3.5. Общие сведения о фотоприемниках
- •3.5.2. Параметры и характеристики фоторезистора
- •3.5.3. Особенности работы фотодиодов
- •3.5.4. Описание установки
- •Подготовка к работе
- •Измерения и обработка результатов
- •3. Исследование параметров электрического сигнала от генератора
- •6. Определение параметров импульса эдс от облучаемого фотодиода
- •10. Определение параметров импульса в цепи фоторезистора
- •11. Оценка параметров сигнала от резистора Rизм
- •16*. Исследование величины светового потока от светодиода
- •Отчетные материалы
- •Тема 4. Биполярные транзисторы Лабораторная работа №4.1
- •4.1. Характеристики биполярных транзисторов
- •4.1.1. Схемы включения биполярных транзисторов
- •4.1.2. Схема с общей базой
- •4.1.3. Схема с общим эмиттером
- •4.1.4. Описание установки
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Исследование схемы с общей базой
- •1.2. Исследование входных характеристик транзистора в схеме об
- •1.6. Исследование выходных характеристик транзистора в схеме об
- •1.12*. Исследование характеристики обратной связи в схеме об
- •1.14. Исследование характеристик передачи тока в схеме об
- •2. Исследование схемы с общим эмиттером
- •2.2. Исследование входных характеристик транзистора в схеме оэ
- •2.6. Исследование выходных характеристик транзистора в схеме оэ
- •2.11*. Исследование характеристики обратной связи в схеме оэ
- •2.13. Исследование характеристики передачи тока в схеме оэ
- •Отчетные материалы
- •Тема 5. Полевые транзисторы Лабораторная работа № 5.1
- •5.1. Характеристики полевого транзистора
- •5.1.1. Полевой транзистор с управляющим p-n-переходом
- •5.1.2. Полевой транзистор с изолированным затвором
- •5.1.3. Особенности схемы измерения
- •Подготовка к работе
- •Измерения и обработка результатов
- •2. Исследование стоковой (выходной) характеристики
- •Отчетные материалы
- •Тема 6. Элементы технологии производства имс Лабораторная работа № 6.1
- •6.1. Элементы технологии изготовления имс
- •6.1.1. Классификация имс
- •6.1.2. Понятие о технологическом цикле производства имс
- •6.1.3. Производство планарного биполярного транзистора
- •6.1.4. Производство планарного полевого транзистора
- •6.1.5. Структура транзисторов статических микросхем памяти
- •6.1.6. Общие сведения о топологии микросхем памяти
- •6.1.7. Описание установки и процедуры испытаний
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Исследование элементов технологии гибридных имс
- •1.4. Исследование сопротивления резисторов на бгис
- •2. Исследование элементов технологии твердотельных имс
- •2.4. Градуировка окуляров с помощью дифракционной решетки
- •3. Исследование твердотельных микросхем на установке "мим"
- •4. Анализ топологии и параметров микросхемы памяти
- •Отчетные материалы
- •Задачи по темам Аналоговая и Цифровая Электроника
- •П2. Диоды и тиристоры
- •П3. Источники вторичного напряжения
- •П4. Транзисторы
- •П5. Аналоговые устройства
- •П6. Операционные усилители и схемы на их основе
- •П7. Преобразовательные устройства и генераторы
- •П8. Стабилизаторы
- •П9. Логические микросхемы
- •П10. Логические схемы
- •П11. Схемы на лэ
- •П12. Триггеры
- •П13. Регистры и счетчики
- •П14. Преобразователи кодов
- •П15. Мультиплексоры, демультиплексоры, сумматоры
- •П16. Цифро-аналоговые преобразователи
- •П17. Микросхемы (технология и устройство)
- •Рекомендуемая литература Основная литература
- •Дополнительная
3.5.3. Особенности работы фотодиодов
Фотодиод (ФД) – диод, прямой и обратный ток которого зависят от освещенности света, подающего на поверхность прибора.
ФД представляет собой диод с открытым для облучения световым потоком областей полупроводника, примыкающих к p-n-переходу (рис. 3.17, е).
Облучим фотодиод активным световым потоком Ф (лм), с частотой волны большей, чем значение кр так называемой красной границы внутреннего фотоэффекта. Это означает, что энергия Екв > hкр падающих квантов света, достаточна для генерации в полупроводнике дополнительных носителей заряда с концентрациями p, n.
Например (рис. 3.17, е), в р-области фотодиода за счет фотогенерации образуются неравновесные дырки p и электроны n. Заметим, что в р-области столь много основных носителей заряда дырок (рр), что концентрацией дополнительных дырок p можно пренебречь. Но концентрация дополнительных электронов n велика по сравнению с концентрацией дырок np, как неосновных носителей. Поэтому нас интересует поведение неравновесных электронов n в p-области, а также дырок р в n-области, если есть облучение и этой части кристалла.
Рис. 3.17. Схемы включения фотодиода (а-г) и его ВАХ (д)
Концентрация дополнительных дырок n в p-области растет в результате облучения фотонами и непрерывной генерации. Из p-области (рис. 3.17, е), через переход переходят неравновесные электроны (идут ″вверх″), подхватываются внутренним полем и накапливаются вблизи ″верхней″ границы перехода при ln. Неравновесные дырки из p-области не могут выйти (их не пускает внутреннее поле перехода) и они накапливаются вблизи ″нижней″ границы перехода при lр. По мере облучения заряд носителей, перешедших через переход (+ дырок снизу, электронов сверху) возрастает и достигает равновесного состояния, которое поддерживается за счет равенства процессов генерации и рекомбинации.
Итак, в процессе облучения поддерживается фиксированной концентрация зарядов различных знаков на границах p-n-перехода. Следовательно, n-область фотодиода заряжается отрицательно, а p-область – положительно. Именно эти заряды вызывают появление на контактах прибора фото-ЭДС.
Как только освещение фотодиода прекратится, заряд, возникший на границах, уменьшается за счет рекомбинации носителей, и фото-ЭДС исчезнет.
Схемы включения ФД, его УГО и вольтамперные характеристики приведены на рис. 3.17. Фотодиод может работать как с внешним источником питания (рис. 3.17, а, б) режим фотопреобразователя, так и без внешнего источника питания (в, г) режим фотогенератора (режим фотоэлемента).
Режим фотопреобразователя при обратном включении
Допустим, что в схеме, представленной на рис. 3.17, а, мы приложили обратное напряжение к фотодиоду, не освещая его, и снимаем вольтамперную характеристику (рис. 3.17, д, III квадрант, кривая 1). При обратном смещении в цепи протекает тепловой ток Is, в данном случае называемый темновым Iт, который весьма мал и может приниматься равным нулю.
Зафиксируем обратное напряжение Ub. При облучении начинается движение потоков неравновесных носителей, как описано выше: неосновные носители - электроны из p-области двигаются в n-область, а неосновные носители - дырки из n-области двигаются в n-область.
Обратим внимание, что возникшие потоки неосновных носителей увеличивают дрейфовую составляющую тока обратно смещенного p-n-перехода, и в данном режиме суммарный обратный дрейфовый ток Iф(Ф) фотодиода возрастает и становится много больше, чем темновой ток: Iф > Iт.
Фототоком называется разность токов, фактически равная Iф:
I = Iф Iт = Iф, (3.29)
Фототок пропорционален величине светового потока Ф, так, что:
Iф = SiФ, (3.30)
где Si интегральная чувствительность.
Увеличение светового потока Ф вызывает возрастание фототока I Iф (рис. 3.17, д, III квадрант, кривая 2). Поэтому при фиксированном напряжении по мере увеличения светового потока Ф вольтамперная характеристика освещенного фотодиода смещается ″вниз″.
Режим фотопреобразователя при прямом смещении
Допустим, что в схеме, представленной на рис. 3.17, б, мы приложили прямое напряжение к фотодиоду (″+″ на p-область), не освещая его, и снимаем вольтамперную характеристику (рис. 3.17, д, I квадрант, кривая 1).
При прямом смещении ВАХ неосвещенного фотодиода идентична вольтамперной характеристике обычного диода. Данный режим идентичен рассмотренному выше режиму фотопреобразователя, однако, теперь к фотодиоду подключается источник с полярностью, указанной на рис. 3.17, б, так что p-n-переход смещен в прямом направлении. Анализируемому режиму работы фотоэлемента соответствует серия ВАХ, расположенных в I квадранте. Если облучение отсутствует, то увеличение внешнего напряжения U вызывает увеличение прямого тока I за счет диффузионного потока основных носителей, аналогично обычному диоду (кривая 1, I квадрант).
Зафиксируем прямое напряжение Uа (рис. 3.17, д). При облучении в результате увеличения концентрации неосновных носителей, двигающихся за счет дрейфа встречно диффузионному потоку основных носителей, прямой ток фотодиода уменьшается, и ВАХ смещается вниз.
При подключении к фотодиоду внешнего прямого напряжения U и облучении потоком Ф ток фотодиода определяется выражением
I(U, Ф) = Is(eU/т – 1) – Iф. (3.31)
Обратим внимание, что при освещении во всех квадрантах ВАХ фотодиода смещаются ″вниз″, но по разным причинам.
Режим фотогенератора
Фотоэлементом – прибор с выпрямляющим р-n-переходом, предназначенный для преобразования световой энергии в электрическую.
В данном случае в схеме (рис. 3.17, в, г) отсутствует внешний источник питания. Фотодиод как фотоэлемент работает в двух режимах: холостого хода ХХ (в) и короткого замыкания КЗ (г).
В режиме холостого хода (рис. 3.17, в) ток через фотодиод отсутствует (внешний источник и нагрузка не подключены). Если облучение отсутствует, то на контактах фотодиода напряжение, естественно, равно нулю Uф = 0.
По мере облучения фотодиода заряд носителей, перешедших через переход (+ дырок слева, электронов справа), возрастает. За счет этих зарядов образуется дополнительная разность потенциалов между границами p-n-перехода – возникает фото-ЭДС (+ в р-области). Другими словами, в режиме ХХ (при I = 0) при освещении на границах p-n-перехода появляется заряд, а, значит, на контактах А и К облучаемого фотодиода появляется ЭДС, называемая фото-ЭДС (полярность указана на рис. 3.17, в).
По мере увеличения светового потока Ф (лм) и накопления указанного заряда, напряжение холостого хода Uхх, отмечаемое на правой части оси абсцисс (рис. 3.17, д), возрастает. Другими словами, точки пересечения ВАХ с осью напряжения U (при токе, равном нулю) соответствуют значениям фото-ЭДС или напряжения холостого хода при различных световых потоках Ф.
Фото-ЭДС, равная напряжению Uхх(Ф), не может превышать контактной разности потенциалов 0: для кремниевых фотодиодов максимальное напряжение Uхх не превышает 1 В.
В режиме короткого замыкания (рис 3.17, г) контакты фотодиода замыкаются накоротко. В отличие от предыдущего случая, через диод идет ток, так что значениям токов короткого замыкания при различных уровнях освещенности соответствуют точки пересечения ВАХ с нижней осью токов (ось ординат).
В режиме короткого замыкания напряжение между контактами А и К фотодиода равно нулю, но ток в диоде равен фототоку, т.е. I = Iф = SiФ. В режиме короткого замыкания соблюдается прямая пропорциональность между током в диоде и световым потоком. Плотность тока короткого замыкания у кремниевых фотоэлементов при освещенности солнечным светом обычно 20-25 мА/см2.
Поскольку в режиме работы фотоэлемента фотодиод подключается к произвольной нагрузке (резистор сопротивлением 0 < R < обозначен пунктиром на рис. 3.14, г), то реальные случаи включения фотоэлемента описываются ВАХ, лежащими в IY квадранте (рис. 3.17, д, обозначены пунктиром). С учетом этих ВАХ при различных освещенностях можно выбрать оптимальный режим работы фотоэлемента, и таким образом определить оптимальное сопротивление нагрузки, при котором в нагрузке будет выделяться наибольшая мощность.
Фотодиоды находят применение как приемники оптического излучения (фотоприемники), элементы солнечных батарей и т.п.
Люксметр прибор, включающий в себя фотодиод, подключенный к вольтметру, который проградуирован в единицах освещенности Е (люкс).
К основным характеристикам фотодиодов можно отнести: диапазон длин волн активного излучения; интегральную чувствительность Si, темновой ток Iт и постоянную времени .
Обозначение фотодиода состоит из букв ФД и номера разработки. Например, фотодиод ФД24К имеет интегральную чувствительность Si = 0,5 мкА/лк и темновой ток 1 мкА. В связи с небольшим уровнем выходного сигнала фотодиоды обычно работают с усилителем. Усилитель может быть внешним или расположенным в одном корпусе вместе с фотоприемником.