
- •Вопрос №1 Множества и действия над ними. Диаграммы Эйлера-Венна. Взаимнооднозначное соответствие
- •1.1Множества и действия над ними.
- •Принадлежность элемента множеству:
- •Непринадлежность элемента множеству:
- •1.2 Диаграммы Эйлера-Венна
- •1.3 Взаимно-однозначное соответствие
- •Вопрос №2 Понятия о матрицах и действия над ними: сложение матриц, умножение матрицы на число, произведение матриц.
- •2.1Понятия о матрицах.
- •2.2 Сложение матриц
- •Свойства сложения матриц:
- •2.3 Умножение матрицы на число
- •Свойства умножения матрицы на число:
- •2.4 Произведение матриц
- •Свойства произведения матриц:
- •Вопрос №3 Обратная матрица, алгоритм ее вычисления.
- •3.1Определение.
- •3.2 Нахождение обратной матрицы
- •Облегченный способ для матрицы второго порядка
- •Вопрос №4 Определитель и его свойства. Правила вычисления определителя третьего порядка.
- •4.1 Определитель и его свойства.
- •4.2 Правила вычисления определителя третьего порядка.
- •Вопрос №5 Решение систем линейных уравнений по формулам Крамера. Исследование количества решений системы уравнений с помощью определителей
- •5.1 Решение систем линейных уравнений по формулам Крамера
- •Вопрос №6 Ранг матрицы. Линейные преобразования над строками матрицы. Решение систем линейных уравнений методом Гаусса
- •6.1 Ранг матрицы
- •6.2 Линейные преобразования над строками матрицы Примеры элементарных преобразований
- •6.3 Решение систем линейных уравнений методом Гаусса
- •Вопрос №7 Решение систем линейных уравнений с помощью обратной матрицы Обратная матрица
- •Облегченный способ для матрицы второго порядка
- •Нахождение обратной матрицы с помощью союзной матрицы
- •Вопрос №8 Векторы. Определение, их виды, равенство, коллинеарность, компланарность векторов. Действия над векторами на плоскости
- •8.1 Векторы. Определение.
- •8.2 Виды векторов.
- •8.3 Коллинеарность векторов
- •Условия коллинеарности векторов
- •8.4 Компланарность векторов.
- •Условия компланарности векторов
- •8.5 Действия над векторами на плоскости Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число
- •Скалярное произведение векторов
- •Вопрос № 9 Разложение вектора по базису. Действия над векторами в координатах
- •9.2 Действия над векторами в координатах
- •Вопрос №10 Скалярное произведение векторов ,его свойство и применение. Проекция вектора на ось
- •10.1 Скалярное произведение векторов
- •10.2 Свойства скалярного произведения
- •10.3 Скалярное произведение векторов применение
- •10.4 Проекция вектора на ось
- •Свойства проекции векторов
- •Вопрос №11 Векторное и смешанное произведение векторов их свойства и применение. Условия коллинеарности и компланарности векторов
- •11.1 Векторное произведение векторов свойства и применение.
- •11.2 Смешанное произведение векторов их свойства и применение
- •Свойства смешанного произведения:
- •11.3 Условия коллинеарности и компланарности векторов
- •Условия компланарности векторов
- •Вопрос №12 Уравнения прямой их виды. Угол между прямыми. Точка пересечения прямых
- •12.1 Уравнения прямой их виды
Свойства смешанного произведения:
1°
2°
3°
Три вектора
компланарны тогда
и только тогда, когда
4°
Тройка векторов является правой тогда
и только тогда, когда
.
Если же
,
то векторы
,
и
образуют
левую тройку векторов.
5°
6°
7°
8°
9°
10°
Тождество Якоби:
Если
векторы
,
и
заданы
своими координатами, то их смешанное
произведение вычисляется по формуле
ПРИМЕР.
Задание. Вычислить объем
пирамиды, построенной на векторах
,
,
Решение. Найдем смешанное произведение заданных векторов, для это составим определитель, по строкам которого запишем координаты векторов , и :
11.3 Условия коллинеарности и компланарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1.
Два вектора a и b коллинеарны, если существует число nтакое, что
a = n · b
Условия коллинеарности векторов 2.
Два вектора коллинеарны, если отношения их координат равны.
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
Условия коллинеарности векторов 3.
Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третьего условия коллинеарности
Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение
a × b = |
i |
j |
k |
= i (aybz - azby) - j (axbz - azbx) + k (axby - aybx) = |
ax |
ay |
az |
||
bx |
by |
bz |
= i (aynaz - aznay) - j (axnaz - aznax) + k (axnay - aynax) = 0i + 0j + 0k = 0 Пример .
Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
ax |
= |
ay |
. |
bx |
by |
Значит:
Вектора a и b коллинеарны т.к. |
1 |
= |
2 |
. |
4 |
8 |
Вектора a и с не коллинеарны т.к. |
1 |
≠ |
2 |
. |
5 |
9 |
Вектора с и b не коллинеарны т.к. |
5 |
≠ |
9 |
. |
4 |
8 |
Условия компланарности векторов
Для 3-х векторов.
Три вектора компланарны если их смешанное произведение равно нулю.
Для 3-х векторов.
Три вектора компланарны если они линейно зависимы.
Для n векторов.
Вектора компланарны если среди них не более двух линейно независимых векторов.
Пример
Проверить компланарны ли три вектора a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.
Решение: найдем смешанное произведение векторов
a · [b × с] = |
1 |
2 |
3 |
= |
1 |
1 |
1 |
||
1 |
2 |
1 |
= 1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2
Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.