
- •1. Основные понятия и положения 11
- •2. Центральное растяжение и сжатие стержня 17
- •3. Геометрические характеристики плоских сечений 42
- •4. Кручение 49
- •5. Изгиб стержней 57
- •Introduction 173
- •1. Basic concepts and principles 175
- •2. Tension and compression of a bar 181
- •3. Geometric characteristics of cross sections 202
- •4. Torsion 208
- •5. Bending of bars 216
- •Index 405 введение
- •1. Основные понятия и положения
- •1.1. Задачи сопротивления материалов, основные гипотезы и допущения
- •1.2. Типы нагрузок и деформаций
- •1.3. Определение внутренних усилий методом сечений. Напряжения
- •2. Центральное растяжение и сжатие стержня
- •2.1. Напряжения и продольная деформация при растяжении и сжатии
- •2.2. Закон Гука при растяжении и сжатии
- •2.3. Поперечная деформация при растяжении и сжатии
- •2.4. Диаграмма растяжения низкоуглеродистой стали
- •2.5. Потенциальная энергия деформации при растяжении
- •2.6. Расчеты на прочность при растяжении и сжатии
- •2.7. Статически неопределимые задачи
- •2.8. Напряжения в наклонных сечениях при растяжении (сжатии) в одном направлении
- •2.9. Закон парности касательных напряжений
- •2.10. Определение напряжений в наклонных сечениях при растяжении (сжатии) в двух направлениях
- •2.11. Определение главных напряжений и положения главных площадок
- •2.12. Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях (обобщенный закон Гука)
- •2.13. Работа внешних и внутренних сил при растяжении (сжатии). Потенциальная энергия деформации
- •3. Геометрические характеристики плоских сечений
- •3.1. Статический момент площади
- •3.2. Полярный момент инерции
- •3.3. Осевой момент инерции
- •3.4. Момент инерции при параллельном переносе осей
- •3.5. Главные оси и главные моменты инерции
- •4. Кручение
- •4.1. Определение крутящего момента
- •4.2. Определение напряжений в стержнях круглого сечения
- •4.3. Деформации и перемещения при кручении валов
- •4.4. Потенциальная энергия при кручении
- •5. Изгиб стержней
- •5.1. Типы опор балок
- •5.2. Определение опорных реакций
- •5.3. Определение внутренних усилий при изгибе
- •5.4. Правило знаков для изгибающих моментов и поперечных сил
- •5.5. Дифференциальные зависимости при изгибе
- •5.6. Построение эпюр изгибающих моментов и поперечных сил
- •5.7. Определение нормальных напряжений
- •5.8. Условия прочности по нормальным напряжениям
- •5.9. Потенциальная энергия деформации при изгибе
- •5.10. Теорема о взаимности работ. Теорема о взаимности перемещений
- •5.11. Определение перемещений методом Мора
- •6. Теории прочности
- •6.1. Назначение гипотез прочности
- •6.2. Первая гипотеза прочности
- •6.3. Вторая и третья гипотезы прочности
- •6.4. Энергетические гипотезы прочности
- •7. Сложное сопротивление
- •7.1. Изгиб в двух плоскостях (косой изгиб)
- •7.2. Изгиб с растяжением (сжатием)
- •7.3. Внецентренное сжатие (растяжение)
- •7.4. Кручение с изгибом
- •7.5. Кручение с растяжением (сжатием)
- •7.6. Пример расчета вала на изгиб с кручением
- •8. Расчет тонкостенных сосудов
- •9. Расчет сжатых стержней на устойчивость (продольный изгиб)
- •9.1. Устойчивые и неустойчивые формы равновесия
- •9.2. Формула Эйлера для критической силы
- •9.3. Влияние способа закрепления концов стержня на критическую силу
- •9.4. Пределы применимости формулы Эйлера
- •9.5. Эмпирические формулы для определения критических напряжений
- •9.6. Практическая формула для расчета на устойчивость
- •10. Динамическое действие нагрузок
- •10.1. Динамические нагрузки
- •10.2. Вычисление напряжений при равноускоренном движении
- •10.3. Определение перемещений и напряжений при ударе
- •11. Расчет на прочность при напряжениях, циклически изменяющихся во времени (расчет на усталость)
- •11.1. Основные определения
- •11.2. Кривая усталости при симметричном цикле. Предел выносливости
- •11.3. Диаграммы предельных напряжений и амплитуд цикла
- •11.4. Факторы, влияющие на предел выносливости
- •11.5. Определение коэффициента запаса прочности при симметричном цикле
- •11.6. Определение коэффициента запаса прочности при асимметричном цикле напряжений
- •Предположим, что при увеличении нагрузки на деталь отношение Такое нагружение называется простым.
- •11.7. Практические меры повышения сопротивления усталости
- •Практикум Лабораторная работа № 1
- •Введение
- •Установка
- •Порядок выполнения
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 2
- •Введение
- •Установка
- •Порядок выполнения
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 3
- •Введение
- •Установка
- •Порядок выполнения
- •Introduction
- •Basic concepts and principles
- •Tasks, main hypothesis and assumptions of the strength of materials
- •1.2. Types of loads and deformations
- •1.3. Determining the internal forces by the method of sections. Stresses
- •2. Tension and compression of a bar
- •2.1. Stresses and a longitudinal deformation in tension and compression
- •2.2. Hooke,s law in tension and compression
- •2.3. The transverse deformation in tension and compression
- •2.4. The tension diagram of the lowcarbon steel
- •2.5. The potential deformation energy in tension
- •2.6. Strength calculation in tension and compression
- •2.7. Statically indeterminate problems
- •2.8. Stresses at inclined sections under tension (compression) in one direction
- •2.9. Law of the shearing stresses couple
- •2.10. Determination of stresses at the inclined sections in tension (compression) in two directions
- •2.11. Determining the principal stresses and the principal planes position
- •2.12. The relation between the deformations and the stresses for the plane and general stresses (a general form of Hook’s law)
- •2.13. The work of the external and internal forces in tension (compression). Strain energy
- •3. Geometric characteristics of cross sections
- •3.1. First moment of an area
- •3.2. Polar moment of inertia
- •3.3. Axial moment of inertia
- •3.4. The moment of inertia at parallel displacement of axis
- •3.5. Principal axes and principal moment of inertia
- •4. Torsion
- •4.1. Determining the twisting moment
- •4.2. Determining the stresses in the round section bar
- •4.3. The deformations and displacements in the shaft torsion
- •4.4. Internal strain energy in torsion
- •5. Bending of bars
- •5.1. Types of the beam support
- •5.2. Determining the support reactions
- •5.3. Determining the internal stresses in bending
- •5.4. The sign rule for the bending moments and the shearing forces
- •5.5. The differential relationships in bending
- •I.E. The intensity of the distributed load is equal to the derivative of the shearing force with respect to the bar section abscissa.
- •I.E. The shearing force is equal to the derivative of the bending moment with respect to the bar section abscissa.
- •I.E. The second derivative of the bending moment with respect to the bar section abscissa is equal to the intensity of the distributed load.
- •5.6. Drawing bending moment and shearing force diagrams
- •5.7. Determining the normal stress
- •5.8. Strength conditions with normal stresses
- •5.9. Strain energy in bending
- •5.10. Betty’s reciprocal theorem. Reciprocal displacement theorem
- •5.11. Determining displacements by Mohr’s method
- •6. Strengtn theory
- •6.1. The purpose of strength hypotheses
- •6.2. The first strength hypothesis
- •6.3. The second and third strength hypotheses
- •6.4. The energy hypotheses of strength
- •7. Combined stress
- •7.1. Bending in two planes (non-uniplanar bending)
- •7.2. Combined axial tension (compression) and bending
- •7.3. Eceentrical tension (compression)
- •7.4. Combined torsion and bending
- •7.5. Combined torsion and compression
- •7.6. Example of the shaft calculation in bending with torsion
- •8. Calculation of the thin-walled vessels
- •9. Stability analysis of the bars in compression (buckling)
- •9.1. Stable and unstable equilibrium forms
- •9.2. Euler’s formula for the critical force
- •9.3. Influence of bar end conditions on the critical force
- •9.4. Applicability limits of of Euler’s formula
- •9.5. Empirical formula for determining the critical stresses
- •9.6. The practical formula for the stability analysis
- •10. Dynamic load action
- •10.1. Dynamic load
- •10.2. Calculating stresses under the uniformly accelerated motion
- •10.3. Determining displacements and stresses under the impact
- •11. Stress analysis under the stresses changing cyclically in time
- •11.1. Basic definitions
- •11.2. Fatigue (Wohler’s) curve under the symmetrical cycle. Fatigue strength
- •11.3. The limit stress diagram and the cycle amplitude
- •11.4. Factors influencing on the fatigue strength
- •11.5. Determining the factor of safety under the symmetrical cycle
- •11.6. Determining the factor of safety under the asymmetrical stress cycle
- •11.7. Practical measures to increase the fatigue strength
- •Practicum Laboratory work № 1
- •Introduction
- •Installation
- •Test specimens
- •Test questions
- •Literature
- •Laboratory work № 2
- •Introduction
- •Installation
- •Test questions
- •Literature
- •Laboratory work № 3
- •Introduction
- •Installation
- •Individual task report
- •Test questions
- •Literature
- •Англо-русский терминологический словарь
- •Список фамилий ученых
- •Greek alphabet
- •Сокращения
- •Единицы измерения
- •Список наиболее употребительных знаков
- •Список использованной литературы
- •Алфавитный указатель
- •Сопротивление материалов
- •625000, Тюмень, ул. Володарского, 38.
- •625039, Г. Тюмень, ул. Киевская, 52
Test questions
What is elastic buckling?
What compressive force value do we call critical?
What formula can be used to determine the value of the critical force?
Point out the domain of Euler formula application.
How does the bar end character influence on the critical force value?
Point out the formula to calculate the slenderness ratio of a bar.
What do we call the limiting slenderness ratio of a bar?
What material characteristics do you have to know to calculate the liming slenderness ratio of a bar?
What practical value does the critical bar determination of compressive bars have?
Does the critical force value depend on the material elastic property?
How many times does the critical force change if you replace the pin-ended bar by a bar damped at each end while testing?
The essence of the least squares method.
Literature
Wiliam A.Nash. Theory and problems of strength of materials. Third edition. - New York: Schaum s outline series, 1994, - 424 p.
Feodosiev V.l. Strength of materials. - M.: Science, 1986. - 512 p.
Laboratory work № 3
«Fatigue test under pure bending»
Introduction
While in operation a lot of machine parts and construction elements are subjected to loads action, changeable in time. If the stresses level is over a certain one, the material stores rupture, that lead to cracks appearance and final breakage.
This disruption happens at stresses much lower than at static action.
The process of storing ruptures in the material, under fluctuating stresses that lead to cracks appearance and final breakage is called the fatigue of a material. The material property to resist to this fatigue is called the fatigue resistance.
Low-cycle and multiple-cycle fatigue are distinguished.
The multiple-cycle fatigue is the fatigue of a material, when macrocracks or full breakage happen at 5·104 cycles and more.
The low-cycle fatigue is the fatigue of a material, when macrocracks or full breakage happen in the elastoplastic area before 5·104 cycles.
The division into low-cycle and multiple-cycle fatigue is conditional.
To calculate the fatigue limit it is necessary to have a number of ultimate limit states properties. One of them is the fatigue limit or the endurance range.
The endurance range is the maximum stress at which the specimen doesn’t break before the test base.
For steel specimen in usual conditions the test base is 107 cycles, for non-iron metals and high-resistance steels the test base is 108 cycles.
The endurance range is determined by experiment.
The sequence of specimen loading is set so as to produce the stress state analogous to the working conditions of a part.
The main types of loading are:
pure bending at rotation;
the same in one plane;
cross-buckle at console round specimen rotation;
the same in one plane of round and not round specimen;
cross-buckle of console round and not round specimen.
Tests are also performed at combination of loading types.
Theory
The plastic deformation localization near the rupture crack is the distinctive feature of the fatigue fracture even in cases when a detail or a specimen has been manufactured from a material that the large plastic deformation precedes the analogous static load condition of the rupture. For example, the rupture of the tension cylindrical specimen made of a soft steel, advances the plastic deformation in all the work part, approaching 20-30%. While under the longitudinal sign variable loading of a similar specimen, the fatigue fracture occurs without the essential plastic deformation. And it can be determined by the surface crack character and the material structure, that the plastic deformation has taken place in some small regions.
The external breaking consists of two ranges: the range of the gradual crack development and the final rupture range.
The gradual crack development has a dull smooth surface, because under the frequent repeating loading the crack ends approach and fall apart, so the crack becomes smooth. The final rupture range has a crystal form due to the cleavage-type rupture.
The materials fatigue strength depends on not only the state stress form but the stress change character in time.
The stress cycle is called their one-time change corresponding to the full period T changes.
The stress change character can be different in time. The simplest sine changes are shown in Fig.1.
b)
с)
d)
Fig. 1. The stresses change during time
a) - the symmetrical cycle, b) - the constant sign,
c) - the pulse cycle, d) - the variable sign
Let us
consider the basic cycle characteristics. The minimum cycle stress
relation
to
the maximum one is called the coefficient of the cycle asymmetry:
For the
symmetrical cycle (fig. 1a) we have
,
and the coefficient of cycle asymmetry r = -1. Two parameters
characterize any stress cycle:
,
where
is the average constant cycle stress,
is the cycle amplitude. The difference
is called the stress scope.
The process
of the crack formation under variable stresses is connected with the
plastic deformation accumulation. It follows, that the fatigue
rupture is determinated only by the stresses
and
.
Besides, as it is shown by experiments, the stress change frequency
influence is immaterial. The high temperature tests are the
exceptions as well as those under the corrosion medium action. As a
result we have to know only the values
and
or
and
to evaluate the fatigue rupture for the given cycle conditions.
The tests
for the symmetrical cycle are the most widespread. In this case the
received fatigue strength value is noted by
.
The first machine for the fatigue tests was built by A. Wohler in the middle of the XlX-th century.
To get the fatigue resistance characteristics we need to conduct more than ten tests of the similar specimens. Each specimen is tested up to the rupture (or up to the cycle base number) only for one stress amplitude. The test process is rather long.
Approximately
about half the specimens are tested under the stresses having 0,7 -
0,5 level of the ultimate strength
.
The tests are conducted in the following sequence. The 0,7 stress is set for the first specimen, then it is loaded up to the rupture and fixed the N cycle number, which the specimen has endured. The process is repeated for the next specimen under the gradual increase of the maximum stress level .
Wohlers curve is drawn for each specimen using the test data ( and N). The curve is drawn in the half-logarithm coordinate system: is put on the ordinate axis and log N is put on the abscess axis.
The fatigue curve appears as in Fig.2. for low-carbon steel.
Wohlers curve approaches asymptotically to the maximum stress value of the cycle under which the specimen does not break up to the test base. This stress is the fatigue strength.