
- •1. Основные понятия и положения 11
- •2. Центральное растяжение и сжатие стержня 17
- •3. Геометрические характеристики плоских сечений 42
- •4. Кручение 49
- •5. Изгиб стержней 57
- •Introduction 173
- •1. Basic concepts and principles 175
- •2. Tension and compression of a bar 181
- •3. Geometric characteristics of cross sections 202
- •4. Torsion 208
- •5. Bending of bars 216
- •Index 405 введение
- •1. Основные понятия и положения
- •1.1. Задачи сопротивления материалов, основные гипотезы и допущения
- •1.2. Типы нагрузок и деформаций
- •1.3. Определение внутренних усилий методом сечений. Напряжения
- •2. Центральное растяжение и сжатие стержня
- •2.1. Напряжения и продольная деформация при растяжении и сжатии
- •2.2. Закон Гука при растяжении и сжатии
- •2.3. Поперечная деформация при растяжении и сжатии
- •2.4. Диаграмма растяжения низкоуглеродистой стали
- •2.5. Потенциальная энергия деформации при растяжении
- •2.6. Расчеты на прочность при растяжении и сжатии
- •2.7. Статически неопределимые задачи
- •2.8. Напряжения в наклонных сечениях при растяжении (сжатии) в одном направлении
- •2.9. Закон парности касательных напряжений
- •2.10. Определение напряжений в наклонных сечениях при растяжении (сжатии) в двух направлениях
- •2.11. Определение главных напряжений и положения главных площадок
- •2.12. Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях (обобщенный закон Гука)
- •2.13. Работа внешних и внутренних сил при растяжении (сжатии). Потенциальная энергия деформации
- •3. Геометрические характеристики плоских сечений
- •3.1. Статический момент площади
- •3.2. Полярный момент инерции
- •3.3. Осевой момент инерции
- •3.4. Момент инерции при параллельном переносе осей
- •3.5. Главные оси и главные моменты инерции
- •4. Кручение
- •4.1. Определение крутящего момента
- •4.2. Определение напряжений в стержнях круглого сечения
- •4.3. Деформации и перемещения при кручении валов
- •4.4. Потенциальная энергия при кручении
- •5. Изгиб стержней
- •5.1. Типы опор балок
- •5.2. Определение опорных реакций
- •5.3. Определение внутренних усилий при изгибе
- •5.4. Правило знаков для изгибающих моментов и поперечных сил
- •5.5. Дифференциальные зависимости при изгибе
- •5.6. Построение эпюр изгибающих моментов и поперечных сил
- •5.7. Определение нормальных напряжений
- •5.8. Условия прочности по нормальным напряжениям
- •5.9. Потенциальная энергия деформации при изгибе
- •5.10. Теорема о взаимности работ. Теорема о взаимности перемещений
- •5.11. Определение перемещений методом Мора
- •6. Теории прочности
- •6.1. Назначение гипотез прочности
- •6.2. Первая гипотеза прочности
- •6.3. Вторая и третья гипотезы прочности
- •6.4. Энергетические гипотезы прочности
- •7. Сложное сопротивление
- •7.1. Изгиб в двух плоскостях (косой изгиб)
- •7.2. Изгиб с растяжением (сжатием)
- •7.3. Внецентренное сжатие (растяжение)
- •7.4. Кручение с изгибом
- •7.5. Кручение с растяжением (сжатием)
- •7.6. Пример расчета вала на изгиб с кручением
- •8. Расчет тонкостенных сосудов
- •9. Расчет сжатых стержней на устойчивость (продольный изгиб)
- •9.1. Устойчивые и неустойчивые формы равновесия
- •9.2. Формула Эйлера для критической силы
- •9.3. Влияние способа закрепления концов стержня на критическую силу
- •9.4. Пределы применимости формулы Эйлера
- •9.5. Эмпирические формулы для определения критических напряжений
- •9.6. Практическая формула для расчета на устойчивость
- •10. Динамическое действие нагрузок
- •10.1. Динамические нагрузки
- •10.2. Вычисление напряжений при равноускоренном движении
- •10.3. Определение перемещений и напряжений при ударе
- •11. Расчет на прочность при напряжениях, циклически изменяющихся во времени (расчет на усталость)
- •11.1. Основные определения
- •11.2. Кривая усталости при симметричном цикле. Предел выносливости
- •11.3. Диаграммы предельных напряжений и амплитуд цикла
- •11.4. Факторы, влияющие на предел выносливости
- •11.5. Определение коэффициента запаса прочности при симметричном цикле
- •11.6. Определение коэффициента запаса прочности при асимметричном цикле напряжений
- •Предположим, что при увеличении нагрузки на деталь отношение Такое нагружение называется простым.
- •11.7. Практические меры повышения сопротивления усталости
- •Практикум Лабораторная работа № 1
- •Введение
- •Установка
- •Порядок выполнения
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 2
- •Введение
- •Установка
- •Порядок выполнения
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 3
- •Введение
- •Установка
- •Порядок выполнения
- •Introduction
- •Basic concepts and principles
- •Tasks, main hypothesis and assumptions of the strength of materials
- •1.2. Types of loads and deformations
- •1.3. Determining the internal forces by the method of sections. Stresses
- •2. Tension and compression of a bar
- •2.1. Stresses and a longitudinal deformation in tension and compression
- •2.2. Hooke,s law in tension and compression
- •2.3. The transverse deformation in tension and compression
- •2.4. The tension diagram of the lowcarbon steel
- •2.5. The potential deformation energy in tension
- •2.6. Strength calculation in tension and compression
- •2.7. Statically indeterminate problems
- •2.8. Stresses at inclined sections under tension (compression) in one direction
- •2.9. Law of the shearing stresses couple
- •2.10. Determination of stresses at the inclined sections in tension (compression) in two directions
- •2.11. Determining the principal stresses and the principal planes position
- •2.12. The relation between the deformations and the stresses for the plane and general stresses (a general form of Hook’s law)
- •2.13. The work of the external and internal forces in tension (compression). Strain energy
- •3. Geometric characteristics of cross sections
- •3.1. First moment of an area
- •3.2. Polar moment of inertia
- •3.3. Axial moment of inertia
- •3.4. The moment of inertia at parallel displacement of axis
- •3.5. Principal axes and principal moment of inertia
- •4. Torsion
- •4.1. Determining the twisting moment
- •4.2. Determining the stresses in the round section bar
- •4.3. The deformations and displacements in the shaft torsion
- •4.4. Internal strain energy in torsion
- •5. Bending of bars
- •5.1. Types of the beam support
- •5.2. Determining the support reactions
- •5.3. Determining the internal stresses in bending
- •5.4. The sign rule for the bending moments and the shearing forces
- •5.5. The differential relationships in bending
- •I.E. The intensity of the distributed load is equal to the derivative of the shearing force with respect to the bar section abscissa.
- •I.E. The shearing force is equal to the derivative of the bending moment with respect to the bar section abscissa.
- •I.E. The second derivative of the bending moment with respect to the bar section abscissa is equal to the intensity of the distributed load.
- •5.6. Drawing bending moment and shearing force diagrams
- •5.7. Determining the normal stress
- •5.8. Strength conditions with normal stresses
- •5.9. Strain energy in bending
- •5.10. Betty’s reciprocal theorem. Reciprocal displacement theorem
- •5.11. Determining displacements by Mohr’s method
- •6. Strengtn theory
- •6.1. The purpose of strength hypotheses
- •6.2. The first strength hypothesis
- •6.3. The second and third strength hypotheses
- •6.4. The energy hypotheses of strength
- •7. Combined stress
- •7.1. Bending in two planes (non-uniplanar bending)
- •7.2. Combined axial tension (compression) and bending
- •7.3. Eceentrical tension (compression)
- •7.4. Combined torsion and bending
- •7.5. Combined torsion and compression
- •7.6. Example of the shaft calculation in bending with torsion
- •8. Calculation of the thin-walled vessels
- •9. Stability analysis of the bars in compression (buckling)
- •9.1. Stable and unstable equilibrium forms
- •9.2. Euler’s formula for the critical force
- •9.3. Influence of bar end conditions on the critical force
- •9.4. Applicability limits of of Euler’s formula
- •9.5. Empirical formula for determining the critical stresses
- •9.6. The practical formula for the stability analysis
- •10. Dynamic load action
- •10.1. Dynamic load
- •10.2. Calculating stresses under the uniformly accelerated motion
- •10.3. Determining displacements and stresses under the impact
- •11. Stress analysis under the stresses changing cyclically in time
- •11.1. Basic definitions
- •11.2. Fatigue (Wohler’s) curve under the symmetrical cycle. Fatigue strength
- •11.3. The limit stress diagram and the cycle amplitude
- •11.4. Factors influencing on the fatigue strength
- •11.5. Determining the factor of safety under the symmetrical cycle
- •11.6. Determining the factor of safety under the asymmetrical stress cycle
- •11.7. Practical measures to increase the fatigue strength
- •Practicum Laboratory work № 1
- •Introduction
- •Installation
- •Test specimens
- •Test questions
- •Literature
- •Laboratory work № 2
- •Introduction
- •Installation
- •Test questions
- •Literature
- •Laboratory work № 3
- •Introduction
- •Installation
- •Individual task report
- •Test questions
- •Literature
- •Англо-русский терминологический словарь
- •Список фамилий ученых
- •Greek alphabet
- •Сокращения
- •Единицы измерения
- •Список наиболее употребительных знаков
- •Список использованной литературы
- •Алфавитный указатель
- •Сопротивление материалов
- •625000, Тюмень, ул. Володарского, 38.
- •625039, Г. Тюмень, ул. Киевская, 52
1.2. Типы нагрузок и деформаций
Элементы машин и конструкций в процессе работы испытывают внешние нагрузки, которые можно подразделить на:
объемные (распределены по всему объему тела, это могут быть силы веса, инерции, магнитного поля);
сосредоточенные (действуют на очень малой площади);
распределенные (распределены по поверхности тела);
статические (медленно возрастают, длительное время сохраняют максимальное значение и медленно убывают);
динамические (быстро изменяются по величине).
Внешние нагрузки вызывают изменение размеров и формы тела, т.е. деформируются. Основные виды деформаций:
растяжение (увеличение размеров в направлении действующих сил);
сжатие (уменьшение размеров при силовом воздействии);
сдвиг, срез (взаимное смещение в одной плоскости в противоположных направлениях частей тела, составляющих до нагружения единое целое, возникает при вырубке, штамповке деталей из листа, резке механическими ножницами);
кручение (взаимный поворот поперечных сечений стержня в плоскости этих сечений, возникает при нагружении крутящими моментами, плоскость действия которых перпендикулярна оси стержня);
изгиб (ось стержня становится кривой или изменяет свою кривизну).
Внешние нагрузки могут вызывать одновременно два и три вида основных деформаций.
1.3. Определение внутренних усилий методом сечений. Напряжения
Метод сечений заключается в том, что тело мысленно рассекается плоскостью на две части, любая из которых отбрасывается, и взамен нее к сечению оставшейся части прикладываются внутренние силы, действовавшие до разреза; оставленная часть рассматривается как самостоятельное тело, находящееся в равновесии под действием внешних и приложенных к сечению внутренних сил.
Метод сечений основан на третьем законе Ньютона.
Рис. 1.1.
Применяя к оставленной части тела условия равновесия, мы сможем найти равнодействующие этих сил.
Основным расчетным объектом в сопротивлении материалов является брус. Рассмотрим, каковы будут статические равнодействующие внутренних сил в поперечном сечении бруса. Рассечем брус (рис. 1.1) поперечным сечением а-а и рассмотрим равновесие его левой части.
Если внешние силы,
действующие на брус, лежат в одной
плоскости, то в общем случае статическими
равнодействующими внутренних сил,
действующих в сечении а-а,
будут главный вектор Fгл,
приложенный в центре тяжести сечения,
и главный момент
уравновешивающие
плоскую систему внешних сил, приложенных
к оставленной части бруса.
Разложим главный вектор на составляющую N, направленную вдоль оси бруса, и составляющую Q, перпендикулярную этой оси, т. е. лежащую в плоскости поперечного сечения.
Эти составляющие
главного вектора вместе с главным
моментом назовем внутренними
силовыми факторами,
действующими в сечении бруса. Составляющую
N
назовем продольной
силой,
составляющую
Q
поперечной
силой,
пару сил с моментом
изгибающим
моментом.
Для определения указанных трех внутренних силовых факторов статика дает три уравнения равновесия оставленной части бруса, а именно:
(ось z всегда направляем по оси бруса).
Если внешние силы, действующие на брус, не лежат в одной плоскости, т. е. представляют собой пространственную систему сил, то в общем случае в поперечном сечении бруса возникают шесть внутренних силовых факторов (рис. 1.2), для определения которых статика дает шесть уравнений равновесия:
Рис. 1.2.
Шесть внутренних
силовых
факторов,
возникающих в поперечном сечении бруса
в самом общем случае, носят следующие
названия:
N
продольная сила;
поперечные силы;
крутящий момент,
изгибающие
моменты.
При разных деформациях в поперечном сечении бруса возникают различные внутренние силовые факторы. Рассмотрим частные случаи.
1. В сечении возникает только продольная cилa N, в этом случае это деформация растяжения (если сила направлена от сечения) или деформация сжатия (если сила N направлена к сечению).
2. В сечении возникает только поперечная сила Q, в этом случае это деформация сдвига.
3.
В сечении возникает только крутящий
момент
,
в этом случае это деформация кручения.
4. В сечении возникает только изгибающий момент , в этом случае это деформация чистого изгиба. Если в сечении одновременно возникает изгибающий момент и поперечная сила Q, то изгиб называют поперечным.
5. Если в сечении одновременно возникает несколько внутренних силовых факторов (например, изгибающий и крутящий моменты или изгибающий момент и продольная сила), то в этих случаях имеет место сочетание основных деформаций (сложное сопротивление).
Одним из основных понятий в сопротивлении материалов является напряжение. Напряжение характеризует интенсивность внутренних сил, действующих в сечении, т.е. нагрузку, приходящуюся на единицу площади.
Рассмотрим какой-либо произвольно нагруженный брус и применим к нему метод сечений (рис. 1.3).
Выделим в сечении
бесконечно малый элемент площади
Ввиду малости этого элемента можно
считать, что в его пределах внутренние
силы, приложенные в различных точках,
одинаковы по модулю и направлению и,
следовательно, представляют собой
систему параллельных сил. Равнодействующую
этой системы обозначим
Разделив
dF
на площадь
элементарной
площадки
dA,
определим
интенсивность внутренних сил, т. е.
напряжение
в
точках
элементарной площадки dA,
.
Таким образом, напряжение есть внутренняя сила, отнесенная к единице площади сечения. Напряжение есть величина векторная.
Единица напряжения:
= Паскаль (Па).
Pис. 1.3.
Поскольку эта единица напряжения очень мала, то мы будем применять более крупную кратную единицу, а именно мегапаскаль (МПа):
Разложим вектор
напряжения
на две
составляющие:
перпендикулярную плоскости сечения и
лежащую в
плоскости сечения (см. рис. 1.3).
Эти составляющие назовем так:
нормальное
напряжение,
касательное напряжение.
Так как угол между
нормальным и касательным напряжениями
всегда равен
90°, то
модуль полного напряжения
определится по формуле:
.