
- •1. Основные понятия и положения 11
- •2. Центральное растяжение и сжатие стержня 17
- •3. Геометрические характеристики плоских сечений 42
- •4. Кручение 49
- •5. Изгиб стержней 57
- •Introduction 173
- •1. Basic concepts and principles 175
- •2. Tension and compression of a bar 181
- •3. Geometric characteristics of cross sections 202
- •4. Torsion 208
- •5. Bending of bars 216
- •Index 405 введение
- •1. Основные понятия и положения
- •1.1. Задачи сопротивления материалов, основные гипотезы и допущения
- •1.2. Типы нагрузок и деформаций
- •1.3. Определение внутренних усилий методом сечений. Напряжения
- •2. Центральное растяжение и сжатие стержня
- •2.1. Напряжения и продольная деформация при растяжении и сжатии
- •2.2. Закон Гука при растяжении и сжатии
- •2.3. Поперечная деформация при растяжении и сжатии
- •2.4. Диаграмма растяжения низкоуглеродистой стали
- •2.5. Потенциальная энергия деформации при растяжении
- •2.6. Расчеты на прочность при растяжении и сжатии
- •2.7. Статически неопределимые задачи
- •2.8. Напряжения в наклонных сечениях при растяжении (сжатии) в одном направлении
- •2.9. Закон парности касательных напряжений
- •2.10. Определение напряжений в наклонных сечениях при растяжении (сжатии) в двух направлениях
- •2.11. Определение главных напряжений и положения главных площадок
- •2.12. Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях (обобщенный закон Гука)
- •2.13. Работа внешних и внутренних сил при растяжении (сжатии). Потенциальная энергия деформации
- •3. Геометрические характеристики плоских сечений
- •3.1. Статический момент площади
- •3.2. Полярный момент инерции
- •3.3. Осевой момент инерции
- •3.4. Момент инерции при параллельном переносе осей
- •3.5. Главные оси и главные моменты инерции
- •4. Кручение
- •4.1. Определение крутящего момента
- •4.2. Определение напряжений в стержнях круглого сечения
- •4.3. Деформации и перемещения при кручении валов
- •4.4. Потенциальная энергия при кручении
- •5. Изгиб стержней
- •5.1. Типы опор балок
- •5.2. Определение опорных реакций
- •5.3. Определение внутренних усилий при изгибе
- •5.4. Правило знаков для изгибающих моментов и поперечных сил
- •5.5. Дифференциальные зависимости при изгибе
- •5.6. Построение эпюр изгибающих моментов и поперечных сил
- •5.7. Определение нормальных напряжений
- •5.8. Условия прочности по нормальным напряжениям
- •5.9. Потенциальная энергия деформации при изгибе
- •5.10. Теорема о взаимности работ. Теорема о взаимности перемещений
- •5.11. Определение перемещений методом Мора
- •6. Теории прочности
- •6.1. Назначение гипотез прочности
- •6.2. Первая гипотеза прочности
- •6.3. Вторая и третья гипотезы прочности
- •6.4. Энергетические гипотезы прочности
- •7. Сложное сопротивление
- •7.1. Изгиб в двух плоскостях (косой изгиб)
- •7.2. Изгиб с растяжением (сжатием)
- •7.3. Внецентренное сжатие (растяжение)
- •7.4. Кручение с изгибом
- •7.5. Кручение с растяжением (сжатием)
- •7.6. Пример расчета вала на изгиб с кручением
- •8. Расчет тонкостенных сосудов
- •9. Расчет сжатых стержней на устойчивость (продольный изгиб)
- •9.1. Устойчивые и неустойчивые формы равновесия
- •9.2. Формула Эйлера для критической силы
- •9.3. Влияние способа закрепления концов стержня на критическую силу
- •9.4. Пределы применимости формулы Эйлера
- •9.5. Эмпирические формулы для определения критических напряжений
- •9.6. Практическая формула для расчета на устойчивость
- •10. Динамическое действие нагрузок
- •10.1. Динамические нагрузки
- •10.2. Вычисление напряжений при равноускоренном движении
- •10.3. Определение перемещений и напряжений при ударе
- •11. Расчет на прочность при напряжениях, циклически изменяющихся во времени (расчет на усталость)
- •11.1. Основные определения
- •11.2. Кривая усталости при симметричном цикле. Предел выносливости
- •11.3. Диаграммы предельных напряжений и амплитуд цикла
- •11.4. Факторы, влияющие на предел выносливости
- •11.5. Определение коэффициента запаса прочности при симметричном цикле
- •11.6. Определение коэффициента запаса прочности при асимметричном цикле напряжений
- •Предположим, что при увеличении нагрузки на деталь отношение Такое нагружение называется простым.
- •11.7. Практические меры повышения сопротивления усталости
- •Практикум Лабораторная работа № 1
- •Введение
- •Установка
- •Порядок выполнения
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 2
- •Введение
- •Установка
- •Порядок выполнения
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 3
- •Введение
- •Установка
- •Порядок выполнения
- •Introduction
- •Basic concepts and principles
- •Tasks, main hypothesis and assumptions of the strength of materials
- •1.2. Types of loads and deformations
- •1.3. Determining the internal forces by the method of sections. Stresses
- •2. Tension and compression of a bar
- •2.1. Stresses and a longitudinal deformation in tension and compression
- •2.2. Hooke,s law in tension and compression
- •2.3. The transverse deformation in tension and compression
- •2.4. The tension diagram of the lowcarbon steel
- •2.5. The potential deformation energy in tension
- •2.6. Strength calculation in tension and compression
- •2.7. Statically indeterminate problems
- •2.8. Stresses at inclined sections under tension (compression) in one direction
- •2.9. Law of the shearing stresses couple
- •2.10. Determination of stresses at the inclined sections in tension (compression) in two directions
- •2.11. Determining the principal stresses and the principal planes position
- •2.12. The relation between the deformations and the stresses for the plane and general stresses (a general form of Hook’s law)
- •2.13. The work of the external and internal forces in tension (compression). Strain energy
- •3. Geometric characteristics of cross sections
- •3.1. First moment of an area
- •3.2. Polar moment of inertia
- •3.3. Axial moment of inertia
- •3.4. The moment of inertia at parallel displacement of axis
- •3.5. Principal axes and principal moment of inertia
- •4. Torsion
- •4.1. Determining the twisting moment
- •4.2. Determining the stresses in the round section bar
- •4.3. The deformations and displacements in the shaft torsion
- •4.4. Internal strain energy in torsion
- •5. Bending of bars
- •5.1. Types of the beam support
- •5.2. Determining the support reactions
- •5.3. Determining the internal stresses in bending
- •5.4. The sign rule for the bending moments and the shearing forces
- •5.5. The differential relationships in bending
- •I.E. The intensity of the distributed load is equal to the derivative of the shearing force with respect to the bar section abscissa.
- •I.E. The shearing force is equal to the derivative of the bending moment with respect to the bar section abscissa.
- •I.E. The second derivative of the bending moment with respect to the bar section abscissa is equal to the intensity of the distributed load.
- •5.6. Drawing bending moment and shearing force diagrams
- •5.7. Determining the normal stress
- •5.8. Strength conditions with normal stresses
- •5.9. Strain energy in bending
- •5.10. Betty’s reciprocal theorem. Reciprocal displacement theorem
- •5.11. Determining displacements by Mohr’s method
- •6. Strengtn theory
- •6.1. The purpose of strength hypotheses
- •6.2. The first strength hypothesis
- •6.3. The second and third strength hypotheses
- •6.4. The energy hypotheses of strength
- •7. Combined stress
- •7.1. Bending in two planes (non-uniplanar bending)
- •7.2. Combined axial tension (compression) and bending
- •7.3. Eceentrical tension (compression)
- •7.4. Combined torsion and bending
- •7.5. Combined torsion and compression
- •7.6. Example of the shaft calculation in bending with torsion
- •8. Calculation of the thin-walled vessels
- •9. Stability analysis of the bars in compression (buckling)
- •9.1. Stable and unstable equilibrium forms
- •9.2. Euler’s formula for the critical force
- •9.3. Influence of bar end conditions on the critical force
- •9.4. Applicability limits of of Euler’s formula
- •9.5. Empirical formula for determining the critical stresses
- •9.6. The practical formula for the stability analysis
- •10. Dynamic load action
- •10.1. Dynamic load
- •10.2. Calculating stresses under the uniformly accelerated motion
- •10.3. Determining displacements and stresses under the impact
- •11. Stress analysis under the stresses changing cyclically in time
- •11.1. Basic definitions
- •11.2. Fatigue (Wohler’s) curve under the symmetrical cycle. Fatigue strength
- •11.3. The limit stress diagram and the cycle amplitude
- •11.4. Factors influencing on the fatigue strength
- •11.5. Determining the factor of safety under the symmetrical cycle
- •11.6. Determining the factor of safety under the asymmetrical stress cycle
- •11.7. Practical measures to increase the fatigue strength
- •Practicum Laboratory work № 1
- •Introduction
- •Installation
- •Test specimens
- •Test questions
- •Literature
- •Laboratory work № 2
- •Introduction
- •Installation
- •Test questions
- •Literature
- •Laboratory work № 3
- •Introduction
- •Installation
- •Individual task report
- •Test questions
- •Literature
- •Англо-русский терминологический словарь
- •Список фамилий ученых
- •Greek alphabet
- •Сокращения
- •Единицы измерения
- •Список наиболее употребительных знаков
- •Список использованной литературы
- •Алфавитный указатель
- •Сопротивление материалов
- •625000, Тюмень, ул. Володарского, 38.
- •625039, Г. Тюмень, ул. Киевская, 52
2.2. Hooke,s law in tension and compression
The relation between the stress and the strain in tension and compression is called Hooke’s law, established by English physicist Robert Hooke in 1678.
Hooke’s law in tension and compression is correct only within definite limits of loading and is formulated as follows: normal stress is directly proportional to the unit strain or shortening.
Hooke’s
law can be written matimacally:
.
The coefficient of proportionality E characterizes the material rigidity i.e. its capability to resist the elastic deformations in tension or compression and which is called the modulus of elasticity or the modulus of direct elasticity or Young,s modulus. Both the modulus of elasticity and the stresses are expressed in the same units the Pa – units.
The E values for some materials, MPa, are as follows
Cast iron Steel Copper Alloy aluminum Tree (along fibre) Polymeric compound Capron
|
- (1,5 1,6 ) .105 - (1,96 2,16) .105 - (1,1 1,3 ) .105 - (0,69 0,71) .105 - (0,1 0,16) .105 - (0,06 0,1 ) .105 - (0,01 0,02) .105 |
If we
substitute the expressions
into
the Hooke’s
law formula we receive:
The product ЕА in the denominator is called the section rigidity under tension and compression; it characterizes physical and mechanical material properties and geometric dimensions of a bar cross section simultaneously.
The relation is called the longitudinal rigidity in tension or compression.
The above given Hooke’s formulas are applied only to the bars manufactured of the same material and their regions with the constant cross section and under the action of the normal force being constant.
For the bar
having several regions which differ in material, the cross section
dimensions, the normal forces are equal to the algebraic sum of the
elongations and shortenings:
.
2.3. The transverse deformation in tension and compression
The experiment with a rubber bar shows that the cross dimensions of the section are decreasing in tension and increasing in compression. It is typical of tension and compression of all materials. Experimentally it was determined that the relation between the transverse and longitudinal deformations is constant for the material in tension and compression. The relation between transverse ε' and longitudinal ε deformation was first stated by the French scientist Poisson (1781—1840). The dependence has the following form:
where is the ration of longitudinal deformations or Poisson,s ratio, is a dimensionless value. Poisson’s ratio depends on the material alone as well as the modulus of elasticity and it characterises its elastic property. Poisson’s ratio is considered the same in tension and compression.
2.4. The tension diagram of the lowcarbon steel
The mechanical characteristics of the materials i.e. the values characterizing their strength, ductility, elasticity and the elastic constant Е and which are necessary for a designer to choose the material and calculate the details, can be received by mechanical testing the standard specimens from the material tested.
Let us consider the diagram received under the statical tension of the low-carbon steel (for example steel Ст.3, Fig.2.2) that is the most widespread and important mechanical testing.
Fig. 2.2.
A special unit of the testing machine draws the diagram automatically, the diagram expresing the relation between the tension force and the total elongation in the F and coordinates. To study the material mechanical properties independent of the specimen’s sizes a diagram in the coordinates “stress-relative elongation” is used. These diagrams differ only on scales.
The low-carbon steel tension diagram is presented in Fig.2.3. The diagram has the following distinctive points:
The A point corresponds to the proportional limit.
The maximum
stress up to which the deformations increase as proportional to the
load i.e. when Hoke’s
law is correct, - is called the proportional limit
(for the steel G.3
=200
MPa).
Point A also practically corresponds to another limit which is called the elastic limit.
The maximum
stress before the deformations remain practically elastic is called
the elastic limit
.
The C point corresponds to the yield point.
The stress at which a visible elongation in the specimen with no loading increase appears is called the yield point (as for steel Ст.3 = 240 MPa).
The yield point is the basic mechanical characteristics while evaluating the strength of the plastic materials.
The B point corresponds to the breaking or ultimate strength.
The
conventional stress equal to the relation of the maximum force which
a specimen can bear to the initial area of the cross section is
called the
ultimate strength
(for steel Ст.3
=
400 MPa).
When reaching the ultimate strength in the specimen under tension the local decrease area of the cross section is formed i.e. the specimen failure begins.
When determining the ultimate strength, the conventional strength is meant as the stress will be larger at the decrease section area.
The ultimate strength is the basic mechanical characteristics to evaluate the strength of the brittle materials.
The M point corresponds to the stress setting up at the minimum cross section at the failure moment. This stress can be termed as the failure stress.
We
determine the modulus of elasticity using the tension diagram in the
coordinates (
):
.
where
is
the stress scale;
is the unit elongation;
is the angle between the abscissa axis and the straight diagram line
up to the proportional limit.
For the majority of carbon steels the proportional limit can be considered as approximately equal to the half of the ultimate strength.
Fig.2.3.
The specimen deformation beyond the elastic limit consists of elastic and residual parts, and also acts the elastic one according to Hook’s law beyond the proportional limit (Fig. 2.3). The load removed, the specimen gets shorter in agreement with the TK diagram line. The deformation of the same specimen will correspond to the KTBM diagram under a repeated loading. So, the material properties change under a repeated specimen tension (loaded before above the elastic limit), namely: the strength increases (the elastic and proportional limits) and the ductile decreases. This phenomenon is called the strain hardness.
The material plasticity degree may be characterized (percentage) by the percentage elongation and the percentage reduction in area of the specimen after the rupture:
where
is
the original specimen length;
– is the specimen length after the rupture; А0
- is
the original specimen cross-section; Аr
is
the minimum specimen cross section after the rupture.
The more is and , the more plastic the materials are. The materials having very small plasticity are called brittle. The tension diagram of the brittle materials does not have upper and lower yield points.
The steel compression diagram coincides with the tension diagram up to the yield point, the steel test results in tension and compression being the same.
The test results in tension and compression for cast – iron differ from each other considerably; the tensile strength is 3,5 times lesser than in compression. In other words, cast – iron works essentially worse in tension than in compression.
Notice, that only low carbon steel and some non-ferrous alloys have strongly marked upper and lower yield points.
The conventional yield strength term is introduced i.e. the stress under which the specimen unit residual elongation is equal to 0,2% for the plastic materials not having the tension diagram with sharply expressed upper and lower points (medium – carbon, high – carbon and alloy steels) or without them (copper, duralumin).
It should be mentioned that the materials division into ductile and brittle ones is but conventional, for depending on the character of the acting load the brittle material can acquire the plastic material properties while the ductile material acquires properties of the brittle material. Thus, under low temperatures or impact load for example, a detail made from a plastic material breaks without a local area increase line as a brittle detail.