
- •5.2.1. Молниезащита зданий и сооружений I категории
- •5.2.2. Молниезащита II категории
- •5.2.3. Молниезащита III категории
- •§4.3. Нелинейные ограничители перенапряжений
- •§2.1. Защита от прямых ударов молнии
- •§3.2. Применение тросов для защиты линии электропередачи
- •§1.1. Молния как источник грозовых перенапряжений
- •§1.2. Основные параметры молнии
- •§1.3. Воздействие молнии
- •§3.1. Профилактика изоляции. Основные методы профилактики изоляции
- •§2.4. Изоляция кабелей
- •§3.5. Профилактика изоляции кабелей
- •§2.2. Изоляция вращающихся электрических машин
- •§2.3. Изоляция силовых трансформаторов
- •§3.2. Профилактика изоляции силовых трансформаторов
§3.1. Профилактика изоляции. Основные методы профилактики изоляции
На заводах контроль изоляции производится при изготовлении и выпуске изделий с целью проверки качества промежуточных технологических операций и соответствия изоляционных характеристик изделий требованиям ГОСТ или заводским нормам. Часто на заводах измеряются изоляционные характеристики изделий, которые не нормированы, но важны в качестве исходных данных для последующего контроля за состоянием изоляционных конструкций.
Контроль изоляции в эксплуатации, обозначаемый часто термином «профилактика изоляции», служит для выявления дефектов в изоляционных конструкциях и последующей их замены или восстановления на месте.
Развитие дефектов в изоляции большей частью связано с проникновением в нее влаги. Попадание влаги обычно связано с механическими повреждениями изоляционных конструкций и изменением температурных уеловий. Процесс образования дефекта и разрушения изоляции протекает в начале весьма медленно и только на последних стадиях имеет скачкообразный характер, заканчиваясь пробоем изоляции.
Технически правильная эксплуатация, предотвращающая вредные воздействия на изоляцию, служит обязательным условием надежной работы высоковольтного оборудования. Срок службы изоляции в существенной степени зависит от постановки эксплуатационного надзора и контроля за изоляцией. Профилактика изоляции является только одним из элементов этого контроля. В задачу профилактики входит также установление типичных для тех или иных изоляционных конструкций дефектов, разработка эффективных способов устранения этих дефектов и рекомендации по разработке рациональных изоляционных конструкций на заводах.
Все методы контроля изоляции можно разделить на разрушающие и неразрушающие. К первым принадлежит испытание повышенным напряжением, ко вторым — все остальные методы, которые проводятся без приложения к изоляции напряжений, способных привести к пробою. Но по этой же причине все неразрушающие испытания являются в известной мере косвенными.
Для выявления возникающих в изоляции дефектов разработаны и применяются следующие методы неразрушающих испытаний изоляции:
а) измерение сопротивления изоляции или измерение тока сквозной проводимости;
б) измерение угла диэлектрических потерь;
в) измерение емкости;
г) измерение распределения напряжения;
д) измерение частичных разрядов в изоляции;
е) просвечивание рентгеновскими лучами или ультразвуком.
В начале изучаются методы неразрушающих испытаний, затем рассматриваются испытания повышенным напряжением.
§2.4. Изоляция кабелей
Электрические кабели - это гибкие изолированные проводники, снабженные защитными оболочками, которые предохраняют изоляцию от внешних механических и иных воздействий. Основными элементами силовых кабелей являются проводники - жилы, изоляция по отношению к земле и между жилами, герметичная металлическая оболочка и защитные покровы.
Металлическая оболочка, выполняемая обычно из свинца или алюминия, предохраняет изоляцию главным образом от влаги и отчасти от механических повреждений. Защитные покровы включают броню из стальных проволок или лент и слои кабельной пряжи из джутового волокна, пропитанной битуминозными составами с антисептиками. Броня обеспечивает главную защиту оболочки кабеля и его изоляции от внешних механических воздействий, а джутовые покровы - защиту оболочки от коррозии.
Кабели в целом и все их элементы должны обладать достаточной гибкостью, чтобы их можно было наматывать на барабаны для транспортировки или хранения и изгибать при укладке по неровной трассе. Поэтому, в частности, жилы силовых кабелей выполняются из большого числа скрученных тонких проволок.
В кабелях изоляция воспринимает на себя массу токоведущих жил, а также значительные усилия, необходимые для изгибания жил при намотке на барабан или при прокладке. В связи с этим от изоляции кабелей требуется сочетание достаточной гибкости с высокой механической прочностью.
Обычное для изоляции оборудования высокого напряжения требование высокой электрической прочности применительно к силовым кабелям имеет особое значение. Дело в том, что при увеличении электрической прочности и соответственно при уменьшении толщины изоляции не только снижаются затраты на ее изготовление, но и улучшаются условия отвода тепла от жилы и увеличиваются допустимые рабочие токи, кабель становится более гибким, достигается экономия металла оболочки и покровных материалов.
К надежности кабельных линий и, следовательно, к их изоляции предъявляются повышенные требования, так как на отыскание места повреждения и особенно на его устранение в подземных линиях затрачивается много времени и средств. При этом следует иметь в виду, что кабельные линии выполняются обычно из нескольких отрезков ограниченной длины (строительная длина - от 250 до 750 м), соединяемых последовательно муфтами. Последние монтируются в полевых условиях, поэтому технология наложения в них изоляции значительно уступает заводской.
В силовых кабелях высокого напряжения преимущественно используется бумажно-масляная изоляция.