
- •Передмова
- •Перевіряємо готовність до вивчення розділу
- •Вхідний тест
- •1. Складаємо опорний конспект
- •2. Контрольні питання
- •3. Задачі і вправи
- •1. Складаємо опорний конспект
- •2. Контрольні питання
- •3. Задачі і вправи
- •1. Складаємо опорний конспект
- •2. Контрольні питання
- •3. Задачі і вправи
- •1. Складаємо опорний конспект
- •2. Контрольні питання
- •3. Задачі і вправи
- •1. Складаємо опорний конспект
- •2. Контрольні питання
- •3. Задачі і вправи
- •1. Складаємо опорний конспект
- •2. Контрольні питання
- •3. Задачі і вправи
- •Індивідуальне завдання 1
- •Варіанти для виконання індивідуального завдання 1
- •Приклад виконання варіанта індивідуального завдання Дослідіть криву
- •Демонстраційні варіанти модульної контрольної роботи до розділу «Теорія кривих»
- •Зведення чудових кривих
2. Контрольні питання
Запишіть відповідь на питання.
Відповіді треба давати повні, з доведеннями
Як аналітично виразити умову, що крива є плоскою?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Який геометричний зміст має знак кривини плоскої кривої, якщо її введено за формулою
(де
– кут між дотичним вектором
і фіксованим вектором
площини)?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Встановіть відповідність між вектор-функціями
т
а
лініями на рисунках
1 – 4 (
).
Рис.
1 Рис. 2
Рис. 3 Рис. 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|