
- •В.Г. Мамонтов, а.А. Гладков практикум по химии почв Москва 2014
- •Введение
- •Раздел I. Валовой анализ
- •1.1. Способы разложения почв
- •1.1.1. Разложение почв кислотами.
- •1.1.2. Разложение почв сплавлением.
- •1.1.3. Разложение почвы спеканием.
- •1.2. Определение гигроскопической влажности
- •1.3. Определение потери при прокаливании
- •1.4. Спекание почвы с содой
- •1.5. Анализ элементного состава почв
- •1.5.1. Определение кремния желатиновым методом
- •Пример расчета. Для спекания взято 1,0224 г прокаленной почвы. Масса прокаленного осадка SiO2 составила 0,8014 г. Содержание SiO2 равно:
- •1.5.2. Определение полуторных оксидов гравиметрическим методом
- •1.5.3. Определение железа фотометрическим методом
- •1.5.4. Определение алюминия фотометрическим методом
- •1.5.5. Вычисленное содержание алюминия по разности
- •1.5.6. Определение кальция и магния комплексонометрическим методом
- •1.5.6.1. Определение кальция
- •1.5.6.2. Определение суммы кальция и магния
- •1.5.7. Пероксидный метод определения титана
- •1.5.8. Определение фосфора фотометрическим методом
- •1.6. Методы определения карбонатов
- •1.6.1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 Ацидометрическое определение карбонатов
- •1.6.2. Алкалиметрическое определение карбонатов по ф.И. Козловскому
- •1.7. Определение гипса
- •1.7.1. Солянокислый метод определения гипса
- •1.7.2. Определение гипса по н.Б. Хитрову
- •1.8. Способы выражения результатов валового анализа
- •1.9. Пересчеты данных валового анализа
- •1.10. Использование данных валового анализа
- •1.10.1. Использование элементного состава для суждения о генезисе почв.
- •1.10.2. Использование элементного состава для оценки потенциального плодородия почвы.
- •1.10.3. Использование данных элементного состава для расчета молекулярных отношений
- •1.10.4. Использование данных элементного состава для расчета запасов химических элементов
- •Пример расчета. Найти запас SiO2 в т/га если его содержание равно 80,63 %, плотность сложения почвы 1,18 г/см3, мощность слоя 9 см.
- •1.10.5. Использование данных элементного состава при изучении биологического круговорота веществ
- •1.10.6. Использование данных элементного состава для
- •1.10.6.1. Метод прямого сравнения
- •1.10.6.2. Методы стабильного компонента
- •1.10.6.2.1. Метод молекулярных отношений
- •1.10.6.2.2. Метод элювиально-аккумулятивных (еа) коэффициентов
- •1.10.6.2.3. Метод баланса веществ
- •1.10.7. Использование данных элементного состава для диагностики минералов илистой фракции.
- •Контрольные вопросы
- •Раздел II. Ионно-солевой комплекс почв
- •2.1. Метод водной вытяжки
- •2.1.1. Влияние солей на сельскохозяйственные культуры
- •2.1.2. Достоинства и недостатки водной вытяжки как метода изучения засоленных почв
- •2.1.3 Анализ водной вытяжки
- •2.1.3.1. Определение величины рН водной вытяжки
- •2.1.3.2. Определение величины сухого остатка
- •2.1.3.3. Определение величины прокаленного остатка
- •2.1.3.4. Определение щелочности от растворимых карбонатов
- •2.1.3.5. Определение общей щелочности
- •2.1.3.6. Определение хлорид-ионов аргентометрическим методом по Мору
- •2.1.3.7. Определение сульфат-ионов
- •2.1.3.7.1. Гравиметрический метод определения сульфат-ионов
- •2.1.3.7.2. Фотометрический метод определения сульфат-ионов
- •2.1.3.8. Определение ионов кальция и магния комплексонометрическим методом
- •2.1.3.8.1. Определение кальция
- •Титрование кальция по индикатору флуорексону
- •2.1.3.8.2. Определение суммы кальция и магния
- •2.1.3.9. Определение натрия и калия
- •2.1.3.9.1. Определение натрия и калия методом фотометрии пламени
- •2.1.3.9.2. Определение содержания натрия и калия по разности
- •Форма 4. Данные анализа водной вытяжки
- •2.1.4. Интерпретация данных водной вытяжки
- •2.1.4.1. Характеристика солевого режима почв по величине сухого остатка
- •2.1.4.2. Оценка химизма (типа) засоления почв.
- •2.1.4.2.1. Общие принципы оценки химизма засоления почв
- •2.1.4.2.2. Оценка степени засоления почв по содержанию токсичных ионов
- •2.1.4.2.3. Оценка степени засоления почв по «суммарному эффекту» токсичных ионов
- •2.1.5. Расчет промывной нормы
- •2.2. Кислотно-основные свойства и катионообменная способность почв
- •2.2.1. Общие представления о кислотно-основных свойствах почв
- •2.2.1.1. Определение рН потенциометрическим методом
- •2.2.2. Общие представления о катионообменной
- •2.2.2.1. Оценка эффективной емкости катионного обмена
- •2.2.2.2. Определение стандартной емкости катионного обмена по Бобко-Аскинази в модификации цинао
- •2.2.2.3. Определение суммы обменных оснований методом Каппена-Гильковица
- •2.2.2.4. Определение обменной кислотности по Дайкухара
- •2.2.2.5. Определение обменных водорода и алюминия по Соколову
- •2.2.2.6. Определение гидролитической кислотности по Каппену
- •2.2.2.7. Определение обменных катионов по методу Гедройца
- •2.2.2.7.1. Определение обменного кальция
- •2.2.2.7.2. Определение суммы обменных кальция и магния
- •2.2.2.7.3. Определение обменных натрия и калия методом фотометрии пламени
- •2.2.2.8. Определение обменных катионов по методу Шолленбергера
- •2.2.2.9. Определение обменных катионов по методу Пфеффера в модификации в.А. Молодцова и и.В. Игнатовой
- •2.2.2.9.1. Определение обменного кальция комплексонометрическим методом
- •2.2.2.9.2. Определение суммы обменных кальция и магния комплексонометрическим методом
- •2.2.2.9.3. Определение обменных натрия и калия методом фотометрии пламени
- •2.2.3. Использование результатов определения катионообменной способности почв
- •2.2.3.1. Вычисление степени насыщенности почв основаниями
- •2.2.3.2. Расчет дозы извести
- •2.2.3.3. Вычисление степени солонцеватости почв
- •2.2.3.4. Расчет дозы гипса
- •Контрольные вопросы
- •Раздел III. Обеспеченность почв основными элементами питания
- •3.1. Методы определения доступных для растений форм азота
- •3.1.1. Определение нитратного азота дисульфофеноловым методом
- •3.1.2. Определение аммонийного азота
- •3.1.3. Определение щелочногидролизуемого азота по Корнфилду
- •3.2. Методы определения доступных для растений форм фосфора и калия
- •3.2.1. Калориметрическое определение подвижного фосфора по фосфорномолибденовой сини
- •3.2.1.1. Восстановление молибдена фосфорномолибденовой кислоты двухлористым оловом
- •3.2.1.2. Восстановление молибдена фосфорномолибденовой кислоты аскорбиновой кислотой
- •3.2.2 Определение подвижного калия методом фотометрии пламени
- •3.2.3. Определение подвижных фосфатов и калия по методу Кирсанова
- •3.2.4. Определение подвижных фосфатов и калия по методу Чирикова
- •3.2.5. Определение подвижных фосфатов и калия по методу Мачигина
- •3.3. Методы определения микроэлементов – тяжелых металлов
- •3.3.1. Определение микроэлементов-тяжелых металлов с помощью 1 н. Раствора hno3
- •3.3.2. Определение микроэлементов-тяжелых металлов с помощью ацетатно-аммонийного буферного раствора с рН 4,8
- •Контрольные вопросы
- •Раздел IV. Органическое вещество почвы
- •4.1. Подготовка почвы для определения содержания и состава гумуса
- •4.2. Методы определения содержания общего гумуса почвы
- •4.2.1. Прямые методы определения содержания углерода органических соединений (гумуса) почвы.
- •4.2.2. Косвенные методы определения содержания углерода органических соединений (гумуса) почвы
- •4.2.2.1. Определение гумуса методом и.В.Тюрина в модификации в.Н.Симакова
- •4.2.2.2. Другие модификации метода и.В. Тюрина.
- •4.2.2.2.1. Спектрофотометрический метод определения содержания гумуса (д.С. Орлов, н.М. Гриндель)
- •4.2.2.2.2. Определение содержания органического углерода почвы методом и.В.Тюрина в модификации б.А.Никитина.
- •4.3. Методы определения общего содержания азота почвы.
- •4.3.1. Определение общего содержания азота методом Кьельдаля.
- •4.3.2. Определение общего содержания азота микрохромовым методом и.В. Тюрина.
- •4.4. Использование данных по содержанию общего гумуса и азота
- •4.4.1. Расчет отношения c:n
- •4.4.2. Вычисление запасов гумуса, углерода и азота.
- •4.5. Методы определение группового и фракционного состава гумуса.
- •4.5.1. Определение группового и фракционного состава гумуса по методу и.В. Тюрина в модификации в.В.Пономаревой и т.А.Плотниковой (1968)
- •4.5.2. Определение группового и фракционного состава гумуса по модифицированной схеме в.В.Пономаревой и т.А. Плотниковой (т.А. Плотникова, н.Е. Орлова, 1984).
- •Ход анализа
- •4.5.3. Ускоренный пирофосфатный метод определения состава гумуса по м.М. Кононовой и н.П. Бельчиковой
- •4.6. Методы изучения некоторых свойств гумусовых кислот при анализе фракционно-группового состава гумуса
- •4.6.1. Определение порога коагуляции гуминовых кислот.
- •4.6.2. Оптические свойства гумусовых веществ.
- •4.6.2.1. Электронные спектры поглощения гумусовых веществ
- •4.6.2.2. Определение коэффициента цветности q4/6
- •4.6.3. Гель-хроматография гумусовых веществ
- •4.7. Показатели гумусового состояния почв
- •Продолжение таблицы 31
- •4.8. Методы определения содержания и состава органического вещества в болотных торфяных почвах.
- •4.8.1. Определение потери при прокаливании и зольности торфа.
- •4.8.2. Одновременное определение общего содержания углерода и азота в торфяных почвах методом Анстета в модификации в.В. Пономаревой и т. А. Николаевой
- •Вычисление результатов анализа
- •Реактивы.
- •4.8.3. Определение общего содержания азота в растительных материалах (торфах, лесных подстилках и пр.) методом к.Е. Гинзбурга и г.М. Щегловой
- •4.8.4. Определение содержания органического азота в вытяжках из торфов микрохромовым методом и.В. Тюрина
- •4.8.5. Определение состава органического вещества торфяно-болотных почв по методу в.В. Пономаревой и т.А. Николаевой.
- •Контрольные вопросы
- •Литература
- •Раздел I. Валовой анализ …………………………………………..…………5
- •Раздел II. Ионно-солевой комплекс почв……………………………70
- •Раздел III. Обеспеченность почв элементами питания….....158
- •Раздел IV. Органическое вещество почв……………………………190
2.2.2.9.1. Определение обменного кальция комплексонометрическим методом
Ход анализа. Берут пипеткой по 25мл полученного раствора в две конические колбы вместимостью по 250 мл. Приливают в каждую по 75 мл дистиллированной воды, лишенной ионов Са2+ и Сu2+.
Добавляют 5-10 капель водного 5%-ного раствора гидроксиламина (для устранения влияния марганца), 2-3 капли 1 %-ного раствора сульфида натрия (для устранения влияния меди), 5 мл 10 %-ного раствора КОН или NaOH (для доведения рН раствора до 12) и вносят деревянной лопаточкой смесь мурексида с NaCl (30 – 50 мг). Раствор должен окраситься в ярко-розовый цвет. Титруют содержимое одной из колб 0,01-0,05 М раствором комплексона III (трилона Б) до перехода ярко-розовой окраски в фиолетовую (лиловую). Титруют медленно при постоянном перемешивании.
Отметив количество комплексона III (трилона Б), пошедшее на титрование, добавляют в колбу избыток трилона и титруют содержимое второй колбы, используя в качестве свидетеля первую колбу с перетитрованным раствором.
2.2.2.9.2. Определение суммы обменных кальция и магния комплексонометрическим методом
Ход анализа. В две конические колбы по 250 мл пипеткой вносят по 25 мл полученного раствора и приливают в каждую колбу по 75 мл дистиллированной воды, лишенной ионов кальция, магния и меди.
Добавляют по 5-10 капель 5%-ного раствора солянокислого гидроксиламина по 2-3 капли 1%-ного раствора сульфида натрия, по 20 мл хлоридно-аммиачного буфера и вносят 30-50 мг индикаторной смеси хромогена черного с NaCl, раствор окрашивается в вишнево-красный цвет.
Титруют содержимое одной из колб 0,01-0,05 М раствором комплексона III (трилона Б). Вторая колба служит для сравнения окраски. При титровании раствор все время перемешивают. Вишнево-красный цвет жидкости вблизи точки эквивалентности приобретает лиловую окраску, после чего титруют медленно. Конец титрования устанавливают по появлению синего цвета с зеленоватым оттенком (сине-голубого). Повторяют титрование со второй колбой.
Содержание Ca2+ и Mg2+ (в мг-экв.) вычисляют по формулам:
где: Са2+ и Mg2+ – содержание ионов, мг-экв на 100 почвы; m0 – навеска воздушно-сухой почвы, взятая для приготовления вытяжки; V0 – общий объем фильтрата после разложения солей и растворения прокаленного остатка, мл; V1 – количество фильтрата взятое на титрование, мл; V2 – количество комплексона III (трилона Б) пошедшее на титрование кальция, мл; V3 – количество комплексона III (трилона Б) пошедшее на титрование суммы кальция и магния, мл; М – молярность комплексона III (трилона Б); Kн2о – коэффициент пересчета на сухую почву; 2 – коэффициент перевода атомов в мг-экв.
2.2.2.9.3. Определение обменных натрия и калия методом фотометрии пламени
Выполнение определения. Приводят прибор в рабочее состояние и фотометрируют серию эталонных растворов с концентрацией определяемых элементов от 2,5 до 100 мг/л. По показаниям прибора для этих растворов строят калибровочный график в координатах: отсчет по шкале прибора – концентрация элемента.
Перед анализом растворов распылитель прибора промывают дистиллированной водой. Эту операцию повторяют после каждого измерения анализируемых проб. Концентрацию натрия и калия в анализируемом растворе находят по калибровочным графикам. Содержание натрия или калия в мг-экв/100 г почвы определяют по формуле:
где а концентрация натрия или калия найденная по калибровочному графику, мг/л; V0 – общий объем фильтрата после разложения солей, мл; m – навеска почвы, взятая для приготовления вытяжки, г; 100 – коэффициент пересчета на 100 г почвы; 1000 – коэффициент пересчета в мл; ЭМ – эквивалентная масса Na+ (23) или К+ (39,1); Кн2о – коэффициент пересчета на сухую почву.
Пример расчета. Навеска почвы, взятая для вытеснения обменных катионов равна 5 г. Объем фильтрата после разложения солей и растворения прокаленного остатка составил 200 мл. На титрование кальция и суммы кальция и магния взято по 25 мл фильтрата. На титрование кальция пошло 6,6 мл 0,01 н. раствора комплексона III (трилона Б), на титрование суммы кальция и магния – 7,9 мл 0,01 н. раствора комплексона III (трилона Б). Концентрация натрия, найденная по калибровочному графику, составила 15 мг/л, калия – 5 мг/л. Кн2о = 1,02. Содержание обменных катионов в мг-экв на 100 г почвы равно:
Эффективная емкость обмена равна: Ca2+ + Mg2+ + Na+ + K+ = 21,54 + 4,24 + 2,66 + 0,52 = 28,96 мг-экв/100 г почвы.
Реактивы.
1. 70 %-ный этиловый спирт (этанол). К 730 мл 96 %-ного этанола приливают 270 мл дистиллированной воды и перемешивают.
2. Реактив Пфеффера – 0,1 М NH4Cl в 70 %-ном этаноле с рН 7. 5,35 г NH4Cl растворяют в 270 мл дистиллированной воды и к полученному раствору приливают 730 мл 96 %-ного этанола. Значение рН раствора доводят до 7, добавляя по каплям концентрированный аммиак.
3. Приготовление остальных реактивов см. раздел 2.2.2.7.