
- •В.Г. Мамонтов, а.А. Гладков практикум по химии почв Москва 2014
- •Введение
- •Раздел I. Валовой анализ
- •1.1. Способы разложения почв
- •1.1.1. Разложение почв кислотами.
- •1.1.2. Разложение почв сплавлением.
- •1.1.3. Разложение почвы спеканием.
- •1.2. Определение гигроскопической влажности
- •1.3. Определение потери при прокаливании
- •1.4. Спекание почвы с содой
- •1.5. Анализ элементного состава почв
- •1.5.1. Определение кремния желатиновым методом
- •Пример расчета. Для спекания взято 1,0224 г прокаленной почвы. Масса прокаленного осадка SiO2 составила 0,8014 г. Содержание SiO2 равно:
- •1.5.2. Определение полуторных оксидов гравиметрическим методом
- •1.5.3. Определение железа фотометрическим методом
- •1.5.4. Определение алюминия фотометрическим методом
- •1.5.5. Вычисленное содержание алюминия по разности
- •1.5.6. Определение кальция и магния комплексонометрическим методом
- •1.5.6.1. Определение кальция
- •1.5.6.2. Определение суммы кальция и магния
- •1.5.7. Пероксидный метод определения титана
- •1.5.8. Определение фосфора фотометрическим методом
- •1.6. Методы определения карбонатов
- •1.6.1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 Ацидометрическое определение карбонатов
- •1.6.2. Алкалиметрическое определение карбонатов по ф.И. Козловскому
- •1.7. Определение гипса
- •1.7.1. Солянокислый метод определения гипса
- •1.7.2. Определение гипса по н.Б. Хитрову
- •1.8. Способы выражения результатов валового анализа
- •1.9. Пересчеты данных валового анализа
- •1.10. Использование данных валового анализа
- •1.10.1. Использование элементного состава для суждения о генезисе почв.
- •1.10.2. Использование элементного состава для оценки потенциального плодородия почвы.
- •1.10.3. Использование данных элементного состава для расчета молекулярных отношений
- •1.10.4. Использование данных элементного состава для расчета запасов химических элементов
- •Пример расчета. Найти запас SiO2 в т/га если его содержание равно 80,63 %, плотность сложения почвы 1,18 г/см3, мощность слоя 9 см.
- •1.10.5. Использование данных элементного состава при изучении биологического круговорота веществ
- •1.10.6. Использование данных элементного состава для
- •1.10.6.1. Метод прямого сравнения
- •1.10.6.2. Методы стабильного компонента
- •1.10.6.2.1. Метод молекулярных отношений
- •1.10.6.2.2. Метод элювиально-аккумулятивных (еа) коэффициентов
- •1.10.6.2.3. Метод баланса веществ
- •1.10.7. Использование данных элементного состава для диагностики минералов илистой фракции.
- •Контрольные вопросы
- •Раздел II. Ионно-солевой комплекс почв
- •2.1. Метод водной вытяжки
- •2.1.1. Влияние солей на сельскохозяйственные культуры
- •2.1.2. Достоинства и недостатки водной вытяжки как метода изучения засоленных почв
- •2.1.3 Анализ водной вытяжки
- •2.1.3.1. Определение величины рН водной вытяжки
- •2.1.3.2. Определение величины сухого остатка
- •2.1.3.3. Определение величины прокаленного остатка
- •2.1.3.4. Определение щелочности от растворимых карбонатов
- •2.1.3.5. Определение общей щелочности
- •2.1.3.6. Определение хлорид-ионов аргентометрическим методом по Мору
- •2.1.3.7. Определение сульфат-ионов
- •2.1.3.7.1. Гравиметрический метод определения сульфат-ионов
- •2.1.3.7.2. Фотометрический метод определения сульфат-ионов
- •2.1.3.8. Определение ионов кальция и магния комплексонометрическим методом
- •2.1.3.8.1. Определение кальция
- •Титрование кальция по индикатору флуорексону
- •2.1.3.8.2. Определение суммы кальция и магния
- •2.1.3.9. Определение натрия и калия
- •2.1.3.9.1. Определение натрия и калия методом фотометрии пламени
- •2.1.3.9.2. Определение содержания натрия и калия по разности
- •Форма 4. Данные анализа водной вытяжки
- •2.1.4. Интерпретация данных водной вытяжки
- •2.1.4.1. Характеристика солевого режима почв по величине сухого остатка
- •2.1.4.2. Оценка химизма (типа) засоления почв.
- •2.1.4.2.1. Общие принципы оценки химизма засоления почв
- •2.1.4.2.2. Оценка степени засоления почв по содержанию токсичных ионов
- •2.1.4.2.3. Оценка степени засоления почв по «суммарному эффекту» токсичных ионов
- •2.1.5. Расчет промывной нормы
- •2.2. Кислотно-основные свойства и катионообменная способность почв
- •2.2.1. Общие представления о кислотно-основных свойствах почв
- •2.2.1.1. Определение рН потенциометрическим методом
- •2.2.2. Общие представления о катионообменной
- •2.2.2.1. Оценка эффективной емкости катионного обмена
- •2.2.2.2. Определение стандартной емкости катионного обмена по Бобко-Аскинази в модификации цинао
- •2.2.2.3. Определение суммы обменных оснований методом Каппена-Гильковица
- •2.2.2.4. Определение обменной кислотности по Дайкухара
- •2.2.2.5. Определение обменных водорода и алюминия по Соколову
- •2.2.2.6. Определение гидролитической кислотности по Каппену
- •2.2.2.7. Определение обменных катионов по методу Гедройца
- •2.2.2.7.1. Определение обменного кальция
- •2.2.2.7.2. Определение суммы обменных кальция и магния
- •2.2.2.7.3. Определение обменных натрия и калия методом фотометрии пламени
- •2.2.2.8. Определение обменных катионов по методу Шолленбергера
- •2.2.2.9. Определение обменных катионов по методу Пфеффера в модификации в.А. Молодцова и и.В. Игнатовой
- •2.2.2.9.1. Определение обменного кальция комплексонометрическим методом
- •2.2.2.9.2. Определение суммы обменных кальция и магния комплексонометрическим методом
- •2.2.2.9.3. Определение обменных натрия и калия методом фотометрии пламени
- •2.2.3. Использование результатов определения катионообменной способности почв
- •2.2.3.1. Вычисление степени насыщенности почв основаниями
- •2.2.3.2. Расчет дозы извести
- •2.2.3.3. Вычисление степени солонцеватости почв
- •2.2.3.4. Расчет дозы гипса
- •Контрольные вопросы
- •Раздел III. Обеспеченность почв основными элементами питания
- •3.1. Методы определения доступных для растений форм азота
- •3.1.1. Определение нитратного азота дисульфофеноловым методом
- •3.1.2. Определение аммонийного азота
- •3.1.3. Определение щелочногидролизуемого азота по Корнфилду
- •3.2. Методы определения доступных для растений форм фосфора и калия
- •3.2.1. Калориметрическое определение подвижного фосфора по фосфорномолибденовой сини
- •3.2.1.1. Восстановление молибдена фосфорномолибденовой кислоты двухлористым оловом
- •3.2.1.2. Восстановление молибдена фосфорномолибденовой кислоты аскорбиновой кислотой
- •3.2.2 Определение подвижного калия методом фотометрии пламени
- •3.2.3. Определение подвижных фосфатов и калия по методу Кирсанова
- •3.2.4. Определение подвижных фосфатов и калия по методу Чирикова
- •3.2.5. Определение подвижных фосфатов и калия по методу Мачигина
- •3.3. Методы определения микроэлементов – тяжелых металлов
- •3.3.1. Определение микроэлементов-тяжелых металлов с помощью 1 н. Раствора hno3
- •3.3.2. Определение микроэлементов-тяжелых металлов с помощью ацетатно-аммонийного буферного раствора с рН 4,8
- •Контрольные вопросы
- •Раздел IV. Органическое вещество почвы
- •4.1. Подготовка почвы для определения содержания и состава гумуса
- •4.2. Методы определения содержания общего гумуса почвы
- •4.2.1. Прямые методы определения содержания углерода органических соединений (гумуса) почвы.
- •4.2.2. Косвенные методы определения содержания углерода органических соединений (гумуса) почвы
- •4.2.2.1. Определение гумуса методом и.В.Тюрина в модификации в.Н.Симакова
- •4.2.2.2. Другие модификации метода и.В. Тюрина.
- •4.2.2.2.1. Спектрофотометрический метод определения содержания гумуса (д.С. Орлов, н.М. Гриндель)
- •4.2.2.2.2. Определение содержания органического углерода почвы методом и.В.Тюрина в модификации б.А.Никитина.
- •4.3. Методы определения общего содержания азота почвы.
- •4.3.1. Определение общего содержания азота методом Кьельдаля.
- •4.3.2. Определение общего содержания азота микрохромовым методом и.В. Тюрина.
- •4.4. Использование данных по содержанию общего гумуса и азота
- •4.4.1. Расчет отношения c:n
- •4.4.2. Вычисление запасов гумуса, углерода и азота.
- •4.5. Методы определение группового и фракционного состава гумуса.
- •4.5.1. Определение группового и фракционного состава гумуса по методу и.В. Тюрина в модификации в.В.Пономаревой и т.А.Плотниковой (1968)
- •4.5.2. Определение группового и фракционного состава гумуса по модифицированной схеме в.В.Пономаревой и т.А. Плотниковой (т.А. Плотникова, н.Е. Орлова, 1984).
- •Ход анализа
- •4.5.3. Ускоренный пирофосфатный метод определения состава гумуса по м.М. Кононовой и н.П. Бельчиковой
- •4.6. Методы изучения некоторых свойств гумусовых кислот при анализе фракционно-группового состава гумуса
- •4.6.1. Определение порога коагуляции гуминовых кислот.
- •4.6.2. Оптические свойства гумусовых веществ.
- •4.6.2.1. Электронные спектры поглощения гумусовых веществ
- •4.6.2.2. Определение коэффициента цветности q4/6
- •4.6.3. Гель-хроматография гумусовых веществ
- •4.7. Показатели гумусового состояния почв
- •Продолжение таблицы 31
- •4.8. Методы определения содержания и состава органического вещества в болотных торфяных почвах.
- •4.8.1. Определение потери при прокаливании и зольности торфа.
- •4.8.2. Одновременное определение общего содержания углерода и азота в торфяных почвах методом Анстета в модификации в.В. Пономаревой и т. А. Николаевой
- •Вычисление результатов анализа
- •Реактивы.
- •4.8.3. Определение общего содержания азота в растительных материалах (торфах, лесных подстилках и пр.) методом к.Е. Гинзбурга и г.М. Щегловой
- •4.8.4. Определение содержания органического азота в вытяжках из торфов микрохромовым методом и.В. Тюрина
- •4.8.5. Определение состава органического вещества торфяно-болотных почв по методу в.В. Пономаревой и т.А. Николаевой.
- •Контрольные вопросы
- •Литература
- •Раздел I. Валовой анализ …………………………………………..…………5
- •Раздел II. Ионно-солевой комплекс почв……………………………70
- •Раздел III. Обеспеченность почв элементами питания….....158
- •Раздел IV. Органическое вещество почв……………………………190
2.2.2.6. Определение гидролитической кислотности по Каппену
Гидролитическая кислотность, или общая потенциальная кислотность, характеризует условное общее количество кислотных компонентов почвы. Гидролитическая кислотность включает ионы Н+ и Al3+, обусловливающие обменную кислотность, и те компоненты, которые связаны с переменными (рН-зависимыми) зарядами ППК. По Л.А. Воробьевой к компонентам, обусловливающим рН-зависимую кислотность, относятся различные AlOH-полимеры, аллофаноподобные вещества, закрепленные на внешних и внутренних поверхностях почвенных минералов, функциональные группы органических соединений и др.
Определение гидролитической кислотности основано на том, что при взаимодействии 1 н. раствора СН3СОONa имеющего рН 8,2 с почвой при соотношении 1 : 2,5 (для торфяных и других органогенных горизонтов используется соотношение почва : раствор 1 : 25 или 1 : 150) образуется уксусная кислота, которая оттитровывается щелочью:
Ход анализа. На технических весах отвешивают 20 г воздушно-сухой почвы, просеянной через сито с диаметром отверстий 1 мм, и высыпают в колбу объемом 200 мл. К почве приливают 50 мл 1,0 н. раствора СН3СОONa и взбалтывают содержимое колбы в течение 1 ч. Часовое взбалтывание можно заменить пятиминутным взбалтыванием рукой с последующим отстаиванием суспензии в течение суток.
Суспензию отфильтровывают через сухой складчатый фильтр. Перед фильтрованием жидкость хорошо взбалтывают, чтобы перенести почву на фильтр. Если фильтрат окажется мутным, его следует снова профильтровать через тот же фильтр. Отбирают пипеткой 25 мл прозрачного фильтрата и переносят в коническую колбу на 100 мл. Прибавляют 1-2 капли фенолфталеина и титруют фильтрат 0,1 н. раствором NaOH до слабо-розовой окраски, не исчезающей в течение 1 мин.
Гидролитическую кислотность вычисляют по формуле:
г
де
НГ
–
гидролитическая кислотность, мг-экв.
на 100 г почвы; V1
– количество раствора NaOH,
пошедшее на титрование взятого объема
фильтрата, мл; н. – нормальность NaOH;
100 – коэффициент пересчета на 100 г почвы;
V0
–общий объем фильтрата, мл; V2
– объем фильтрата, взятый для титрования,
мл; 1,75 – поправка на полноту вытеснения
ионов водорода; m
– навеска почвы, г.
Пример расчета. Для определения величины гидролитической кислотности к навеске воздушно-сухой почвы массой 20,0 г прилито 50 мл 1,0 н. раствора СН3СООNa. После того как суспензия была отфильтрована, взято 25 мл фильтрата, на титрование которого пошло 2,2 мл 0,104 н. раствора NaOH. Величина гидролитической кислотности равна:
Реактивы.
1. 1н. раствор CH3COONa с рН 8,2. 136 г CH3COONa ∙ 3H2O растворяют примерно в 500 мл дистиллированной воды, если нужно фильтруют и доводят раствор дистиллированной водой до 1 л. Переливают раствор в бутыль и проверяют рН. Для этого 20-25 мл раствора уксуснокислого натрия помещают в фарфоровую чашку и прибавляют каплю фенолфталеина. Если раствор окрасится в слабо-розовый цвет, он пригоден для работы. При отсутствии окраски титруют его 0,1 н. раствором NaOH и на основании этого титрования добавляют в раствор необходимое количество щелочи. При интенсивно красной окраске титруют раствор уксуснокислого натрия 0,1 н. раствором HCl до слабо-розовой окраски и добавляют в раствор необходимое количество кислоты, чтобы довести рН до 8,2. Раствор уксуснокислого натрия сохраняется плохо, поэтому его готовят непосредственно перед использованием.
2. 1%-ный раствор фенолфталеина. 1 г сухого реактива растворяют в 100 мл 60%-ного этилового спирта.
3. 60%-ный раствор этилового спирта. 60 мл 100%-ного или 63,2 мл 95%-ного этилового спирта доводят дистиллированной водой до объема 100 мл.
4. 0,1 н. раствор NaOH. Готовят из фиксанала или берут 4 г NaOH («х.ч.») и растворяют в дистиллированной воде без СО2, после чего доводят дистиллированной водой до объема 1 л и тщательно перемешивают. Нормальность раствора NaOH устанавливают по раствору H2SO4, приготовленному из фиксанала или по перекристаллизованной янтарной кислоте.