Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
0
Добавлен:
21.02.2020
Размер:
7.39 Mб
Скачать

Пример 25

Найти неопределенный интеграл

.

Проведем замену:

.

В данном примере: a =-1, b = 2, c = 3, d = 1. Тогда для dx имеем:

.

Таким образом:

.

Такой интеграл, кстати, уже фигурировал в Примере 13. Интегрируем по частям:

Проведем обратную замену. Если изначально

,

то обратно:

.

Преобразуем далее:

.

Некоторым страшно, а я это продифференцировал, ответ верный!

Иногда встречаются интегралы вида

, ,

но это нужно быть либо слишком умным, либо попасть под раздачу.

Идея та же – избавиться от корня, причем во втором случае, как все догадались, следует проводить подстановку

.

и самостоятельно выводить, чему будет равняться дифференциал dx.

Теперь вам практически любой интеграл по силам, успехов!

Решения и ответы:

Пример 2: Решение:

.

Проведем замену:

Интегрируем по частям:

Пример 3: Ответ:

.

Пример 4: Ответ:

.

Пример 6: Решение:

.

Интегрируем по частям:

Таким образом:

В результате:

Пример 8: Решение:

Дважды интегрируем по частям и сводим интеграл к самому себе:

Таким образом:

Пример 10: Решение:

.

Проведем замену:

Пример 11: Решение:

Замена:

.

Пример 12: Решение:

Замена:

.

Пример 14: Решение:

Дважды используем рекуррентную формулу

Пример 16: Решение:

Пример 18: Решение:

.

Используем формулу приведения:

и формулу двойного угла:

.

Далее имеем

Пример 19: Решение:

Пример 21: Решение: –3 – 3 = –6 – целое отрицательное число, значит преобразуем

Пример 23: Решение:

Пример 24: Решение:

.

8.2. Определенный интеграл. Примеры решений

Для того, чтобы научиться решать определенные интегралы необходимо:

1) Уметь находить соответствующие неопределенные интегралы.

2) Уметь вычислить определенный интеграл.

Как видите, для того, чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах. Поэтому, если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще не совсем закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений.

В общем виде определенный интеграл записывается так:

Что прибавилось по сравнению с неопределенным интегралом?

Прибавились пределы интегрирования.

Нижний предел интегрирования стандартно обозначается буквой a.

Верхний предел интегрирования стандартно обозначается буквой b.

Отрезок [a; b] включает граничные точки и называется отрезком интегрирования.

Что такое определенный интеграл? Можно посмотреть в учебниках про диаметр разбиения отрезка, предел интегральных сумм и т. д., но урок носит практический характер. Поэтому скажем, что определенный интеграл – это, прежде всего, самое что ни на есть обычное ЧИСЛО.

Есть ли у определенного интеграла геометрический смысл? Есть. И очень хороший. Самая популярная задача вычисления определённого интеграла – вычисление площади с помощью определенного интеграла.

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число, равное приращению первообразной функции на отрезке [a; b].

Как решить определенный интеграл? С помощью знакомой со школы формулы Ньютона-Лейбница:

.

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию F(X) (неопределенный интеграл). Обратите внимание, что константа C в определенном интеграле никогда не добавляется.

Обозначение является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись

?

Это подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: F(b).

3) Подставляем значение нижнего предела в первообразную функцию: F(a).

4) Рассчитываем (без ошибок!) разность F(b)-F(a), то есть, находим число, равное приращению первообразной (от подынтегральной) функции на отрезке [a; b].

Готово.

Всегда ли существует определенный интеграл? Нет, не всегда существует всё, что мы напишем в виде определённого интеграла. Например, интеграла

не существует, поскольку отрезок интегрирования не входит в область определения подынтегральной функции и значения под квадратным корнем не могут быть отрицательными. А вот менее очевидный пример:

.

Такого интеграла тоже не существует на всём отрезке [-2; 3], так как в точках

,

этого отрезка подынтегральная функция f(x) = tg(x) не существует.

Для того, чтобы определенный интеграл существовал на данном отрезке, необходимо, чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. Бывает так, что подолгу мучаешься с нахождением трудной первообразной, а когда наконец-то ее находишь, то ещё и ломаешь голову над вопросом: «что за ерунда получилась?». Например, если получилось примерно так:

???!!!

то нельзя подставлять отрицательные числа под корень! Если для решения в контрольной работе, на зачете или экзамене Вам предложен несуществующий интеграл вроде

,

то нужно дать ответ, что интеграла не существует и обосновать – почему.

Может ли определенный интеграл быть равен отрицательному числу? Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будет несобственный интеграл, коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования? Может, и такая ситуация реально встречается на практике. Интеграл

преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак:

Например, в определенном интеграле перед интегрированием

целесообразно поменять пределы интегрирования на «привычный» порядок:

.

В таком виде интегрировать значительно удобнее.

Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:

Это справедливо не только для двух, но и для любого количества функций.

В определенном интеграле можно проводить замену переменной интегрирования, правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.

Для определенного интеграла справедлива формула интегрирования по частям: .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]