Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
7.39 Mб
Скачать

Последовательная замена переменной и интегрирование по частям Пример 1

Найти неопределенный интеграл

. Подынтегральная функция представляет собой арктангенс, под которым находится кубический корень. Первая же мысль, которая приходит в голову – избавиться бы от этого корня. Данный вопрос решается путем замены переменной, сама техника замены специфична, и она подробно рассмотрена на уроке Интегралы от иррациональных функций.

Проведем замену:

. После такой замены у нас получится вполне симпатичная вещь: .

Осталось выяснить, во что превратится . Навешиваем дифференциалы на обе части нашей замены:

.

И, само собой, раскрываем дифференциалы:

.

На чистовике решение кратко записывается примерно так:

.

Проведем замену:

.

.

В результате замены получим интеграл, который интегрируется по частям:

.

(1) Выносим (1/3) за скобки. К оставшемуся интегралу применяем прием, который рассмотрен в первых примерах урока статьи Интегрирование некоторых дробей.

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала.

(4) Берём оставшиеся интегралы. Обратите внимание, что здесь в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены «тэ»: .

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения.

Пример 2

Найти неопределенный интеграл

.

Пример 3

Найти неопределенный интеграл

.

Пример 4

Найти неопределенный интеграл

.

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений - очевидно. Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Метод сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

.

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе, не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой I и начнем решение:

.

Интегрируем по частям:

.

.

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишем подробнее:

.

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим I в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Или:

Константу C, строго говоря, надо было добавить ранее, но мы приписали её в конце. Настоятельно рекомендуем прочитать в примечании, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые значения, и в этом смысле между константами и нет никакой разницы.

В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях. Там будем строгими, особенно при определении частных решений. А здесь такая вольность допускается только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]