Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
7.39 Mб
Скачать

Пример 18

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

С помощью универсальной тригонометрической подстановки решаются и другие интегралы.

Пример 19

Найти неопределенный интеграл

.

Здесь перед применением универсальной тригонометрической подстановки необходимо понизить степени в знаменателе при помощи формул , . Попробуйте разобраться в данном примере самостоятельно, полное решение и ответ очень близко!

Применение универсальной тригонометрической подстановки часто приводит к длинным и трудоемким вычислениям. Поэтому на практике универсальной тригонометрической подстановки стараются избегать (если возможно). Для этого используют ряд методов и приемов, о которых можно прочитать в статье Сложные интегралы.

Решения и ответы:

Пример 2: Решение:

Используем формулу:

Пример 4: Решение:

Пример 6: Решение:

Пример 8: Решение:

Пример 10: Решение:

Пример 12: Решение:

.

Проведем замену:

.

Примечание: здесь можно было сделать замену , но гораздо выгоднее обозначить за t весь знаменатель.

Пример 13: Решение:

.

Проведем замену:

.

.

Пример 16: Решение:

Проведем замену: .

.

Пример 18: Решение:

.

Проведем универсальную тригонометрическую подстановку:

.

Пример 19: Решение:

.

Универсальная тригонометрическая подстановка:

;

.

8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения

На данном уроке мы научимся находить интегралы от некоторых видов дробей. Для успешного усвоения материала Вам должны быть хорошо понятны выкладки статей Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле.

Как уже отмечалось, в интегральном исчислении нет удобной формулы для интегрирования дроби:

.

И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых сейчас и расскажем.

Метод разложения числителя Пример 1

Найти неопределенный интеграл

. Выполнить проверку.

На уроке Неопределенный интеграл. Примеры решений мы избавлялись от произведения функций в подынтегральном выражении, превращая её в сумму, удобную для интегрирования. Оказывается, что иногда в сумму (разность) можно превратить и дробь!

Анализируя подынтегральную функцию, мы замечаем, что и в числителе и в знаменателе у нас находятся многочлены первой степени: x и (x+3). Когда в числителе и знаменателе находятся многочлены одинаковой степени, то помогает следующий искусственный приём: в числителе мы должны самостоятельно организовать такое же выражение, что и в знаменателе:

.

Рассуждение может быть следующим: «В числителе надо организовать(x + 3), чтобы привести интеграл к табличным, но если я прибавлю к «иксу» тройку, то, для того, чтобы выражение не изменилось – я обязан вычесть такую же тройку».

Теперь можно почленно разделить числитель на знаменатель:

В результате мы добились того, чего и хотели. Используем первые два правила интегрирования:

Готово. Проверку при желании выполните самостоятельно. Обратите внимание, что

во втором интеграле – это «простая» сложная функция. Особенности ее интегрирования обсуждались на уроке Метод замены переменной в неопределенном интеграле.

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]