Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
7.39 Mб
Скачать

Пример 12

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

И заключительный пример сегодняшнего урока под счастливым номером тринадцать: «арк», умноженный на многочлен. Он сложнее, и предназначен для маньяков, желающих лучше разобраться в методе интегрирования по частям. Пример, пожалуй, будет тоже для самостоятельного решения, поскольку меня немного утомил тот логарифм в квадрате.

Пример 13

Найти неопределенный интеграл

.

Рассмотренный метод часто применяется в комбинации с другими приёмами решения интегралов. Читатели с хорошими навыками могут ознакомиться с такими примерами на уроке Сложные интегралы.

Решения и ответы:

Пример 3: Решение:

.

Пример 4: Решение:

Интегрируем по частям:

.

Пример 6: Решение:

Дважды интегрируем по частям:

Пример 8: Решение:

Интегрируем по частям:

Пример 10: Решение:

Интегрируем по частям:

Примечание: Здесь мы использовали известную тригонометрическую формулу двойного угла . Её можно было использовать и сразу: , а потом интегрировать по частям.

Похожим способом также решаются интегралы вроде , – в них необходимо (сразу или в ходе решения) понизить степень синуса (косинуса) с помощью соответствующих формул.

Более подробно – см. Интегралы от тригонометрических функций.

Пример 12:

Интегрируем по частям:

Пример 13:

Интегрируем по частям:

Примечание: Если возникли трудности с интегралом

,

то следует посетить урок Интегрирование некоторых дробей.

8.1.7. Интегралы от тригонометрических функций. Примеры решений

На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все примеры будут разобраны подробно, доступно и понятно.

Для успешного изучения интегралов от тригонометрических функций Вы должны хорошо ориентироваться в простейших интегралах, а также владеть некоторыми приемами интегрирования. Ознакомиться с этими материалами можно на лекциях Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле.

А сейчас нам потребуются Таблица интегралов, Таблица производных и Справочник тригонометрических формул. Все методические пособия можно найти на странице Математические формулы и таблицы. Рекомендую всё распечатать. Особо заостряю внимание на тригонометрических формулах, они должны быть перед глазами – без этого эффективность работы заметно снизится.

Но сначала о том, каких интегралов в данной статье нет. Здесь не найдется интегралов вида , – косинус, синус, умноженный на какой-нибудь многочлен (реже что-нибудь с тангенсом или котангенсом). Такие интегралы интегрируются по частям, и для изучения метода посетите урок Интегрирование по частям. Примеры решений. Также здесь не найдется интегралов с «арками» – арктангенсом, арксинусом и др., они тоже чаще всего интегрируются по частям.

При нахождении интегралов от тригонометрических функций используется ряд методов, в том числе:

- использование тригонометрических формул;

- понижение степени подынтегральной функции (частный случай п.1);

- метод замены переменной;

- универсальная тригонометрическая подстановка (частный случай п.3).

Следует отметить, что данное разделение весьма условно, поскольку очень часто все вышеперечисленные правила используются одновременно в одном примере.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]